Skip to main content

Abstract

The electrical activity of nerves and muscle produces small magnetic fields: biomagnetism. We analyze the magnetic field produced by a single nerve fiber, and develop a current-dipole model for this magnetic field when measured far away. Electrical activity in the heart gives rise to the magnetocardiogram, and electrical activity in the brain causes the magnetoencephalogram. This chapter then explores electromagnetic induction and transcranial magnetic stimulation of the brain. An understanding of magnetic materials is needed to describe magnetotactic bacteria. The chapter ends with a discussion of the detection of weak magnetic fields using a superconducting quantum interference device (SQUID) magnetometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Be careful. We are talking about two different kinds of dipoles in this chapter. The current dipole \(\mathbf {p}\) is a source and sink of current and has units A m. The magnetic dipole \(\mathbf {m}\), equivalent to a small magnet with north and south poles, has units A m\(^{2}\). The magnetic field from a magnetic dipole falls off as \(1/r^{3}\).

  2. 2.

    Much weaker magnetic moments of the atomic nucleus are considered in Chap. 18.

References

  • Able KP, Able MA (1995) Interactions in the flexible orientation system of a migratory bird. Nature 375:230–232

    Google Scholar 

  • Barach JP (1987) The effect of ohmic return currents on biomagnetic fields. J Theor Biol 125:187–191

    Google Scholar 

  • Barach JP, Roth BJ, Wikswo JP (1985) Magnetic measurements of action currents in a single nerve axon: a core conductor model. IEEE Trans Biomed Eng 32:136–140

    Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of the human cortex. Lancet 1(8437):1106–1107

    Google Scholar 

  • Clarke J (1994) SQUIDs. Sci Am (Aug 1994):46–53

    Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Google Scholar 

  • Cohen D, Nemoto I, Kaufman L, Arai S (1984) Ferrimagnetic particles in the lung part II: the relaxation process. IEEE Trans Biomed Eng 31:274–285

    Google Scholar 

  • de Araujo FF, Pires MA, Frankel RB, Bicudo CEM (1986) Magnetite and magnetotaxis in algae. Biophys J 50:375–378

    Google Scholar 

  • Eder SHK

    Google Scholar 

  • Eisberg R, Resnick R (1985) Quantum physics of atoms, molecules, solids, nuclei and particles, 2nd ed. Wiley, New York

    Google Scholar 

  • Finegold L (2012) Resource letter BSSMF-1: biological sensing of static magnetic fields. Am J Phys 80:851–861

    Google Scholar 

  • Frankel RB (1984) Magnetic guidance of organisms. Ann Rev Biophys Bioeng 13:85–103

    Google Scholar 

  • Frankel RB, Bazylinski DA (1994) Magnetotaxis and magnetic particles in bacteria. Hyperfine Interact 90:135–142

    Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356

    Google Scholar 

  • Freitas C, Mondragon-Llorca H, Pascual-Leone A (2011) Noninvasive brain stimulation in Alzheimer’s disease: systematic review and perspectives for the future. Exp Gerontol 46(8):611–627

    Google Scholar 

  • Gielen FLH, Roth BJ, Wikswo JP Jr (1986) Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans Biomed Eng 33:910–921

    Google Scholar 

  • Gielen FLH, Friedman RN, Wikswo JP Jr (1991) In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. Correlations with muscle force. J Gen Physiol 98(5):1043–1061

    Google Scholar 

  • Gould JL (1995). Constant compass calibration. Nature 375:184

    Google Scholar 

  • Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028

    Google Scholar 

  • Griffiths DJ (2013) Introduction to electrodynamics, 4th ed. Addison-Wesley, Boston

    Google Scholar 

  • Hallett M, Cohen LG (1989) Magnetism: a new method for stimulation of nerve and brain. JAMA 262:538–541

    Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497

    Google Scholar 

  • Hari R, Salmelin R (2012) Magnetoencephalography: from SQUIDs to neuroscience. Neuroimage 20th Anniversary Special Edition. Neuroimage 61:386–396

    Google Scholar 

  • Hosaka H, Cohen D, Cuffin BN, Horacek BM (1976) The effect of torso boundaries on the magnetocardiogram. J Electrocardiol 9:418–425

    Google Scholar 

  • Ilmoniemi RJ, Ruohonen J, Karhu J (1999) Transcranial magnetic stimulation—A new tool for functional imaging of the brain. Crit Rev Biomed Eng 27(3–5):241–284

    Google Scholar 

  • Jordan A, Scholz R, Wust P, Fahline H, Roland F (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced ecitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Google Scholar 

  • Mielczarek EV, McGrayne SB (2000) Iron, nature’s universal element: why people need iron and animals make magnets. Rutgers U. Press, New Brunswick

    Google Scholar 

  • Moskowitz BM (1995) Biomineralization of magnetic minerals. Rev Geophys 33(Part 1 Suppl. S):123–128

    Google Scholar 

  • Nielsen P, Fischer R, Englehardt R, Tondury P, Gabbe EE, Janka GE (1995) Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone. Brit J Hematol 91:827–833

    Google Scholar 

  • O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Eisinberg KE, Nahas Z, McDonald WM, Avery D, Fitzgerald PB, Loo C, Demitrack MA, George MS, Sackheim HA (2007) Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression. A multisite randomized controlled trial. Biol Psychiatr 62(11):1208–1216

    Google Scholar 

  • Page CH (1977) Electromotive force, potential difference, and voltage. Am J Phys 45:978–980

    Google Scholar 

  • Pankhurst QA, Thanh NTK, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42:224041

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd ed. reprinted with corrections, 1995. Cambridge University Press, New York

    Google Scholar 

  • Purcell EM, Morin DJ (2013) Electricity and magnetism, 3rd ed. Cambridge University Press, New York

    Google Scholar 

  • Romer RH (1982) What do “voltmeters” measure?: Faraday’s law in a multiply connected region. Am J Phys 50:1089–1093

    Google Scholar 

  • Rossi S, Hallett M, Rossini PM, Pascual-Leone A, The safety of the TMS Consensus Group (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039

    Google Scholar 

  • Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22(3/4):253–305

    Google Scholar 

  • Roth BJ, Sato S (1992) Accurate and efficient formulas for averaging the magnetic field over a circular coil. In Hoke M, Erne SN, Okada TC, Romani GL (eds) Biomagnetism: clinical aspects. Elsevier, Amsterdam

    Google Scholar 

  • Roth BJ, Wikswo JP Jr (1985) The magnetic field of a single axon: a comparison of theory and experiment. Biophys J 48:93–109

    Google Scholar 

  • Roth BJ, Woosley JK, Wikswo JP Jr (1985) An experimental and theoretical analysis of the magnetic field of a single axon. In Weinberg H, Stroink G, Katila T (eds) Biomagnetism: applications and theory. Pergamon, New York, pp 78–82

    Google Scholar 

  • Roth BJ, Pascual-Leone A, Cohen LG, Hallett M (1992) The heating of metal electrodes during rapid-rate magnetic stimulation: a possible safety hazard. Electroencephalogr Clin Neurophysiol 85:116–123

    Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22

    Google Scholar 

  • Scott GC, Joy MLG, Armstrong RL, Henkelman RM (1991) Measurement of nonuniform current density by magnetic resonance. IEEE Trans Med Imag 10:362–374

    Google Scholar 

  • Shadowitz A (1975) The electromagnetic field. McGraw-Hill, New York

    Google Scholar 

  • Stahlhofen W, Moller W (1993) Behaviour of magnetic micro-particles in the human lung. Rad Env Biophys 32(3):221–238

    Google Scholar 

  • Staton DJ, Friedman RN, Wikswo JP Jr (1993) High resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue. IEEE Trans Appl Superconduct 3(1):1934–1936

    Google Scholar 

  • Strasburger JF, Cheulkar B, Wakai RT (2008) Magnetocardiography for fetal arrhythmias. Heart Rhythm 5:1073–1076

    Google Scholar 

  • Stroink G (1985) Magnetic measurements to determine dust loads and clearance rates in industrial workers and miners. Med Biol Eng Comput 23:44–49

    Google Scholar 

  • Stroink G (1992) Cardiomagnetic imaging. In: Zaret BL et al (eds) Frontiers in cardiovascular imaging. Raven Press, New York, pp 161–177

    Google Scholar 

  • Stroink G, Blackford B, Brown B, Horacek BM (1981) Aluminum shielded room for biomagnetic measurements. Rev Sci Instrum 52(3):463–468

    Google Scholar 

  • Swinney KR, Wikswo JP Jr (1980) A calculation of the magnetic field of a nerve action potential. Biophys J 32:719–732

    Google Scholar 

  • Tan GA, Brauer F, Stroink G, Purcell CJ (1992) The effect of measurement conditions on MCG inverse solutions. IEEE Trans Biomed Eng 39(9):921–927

    Google Scholar 

  • Trontelj Z, Zorec R, Jazbinsek V, Erne SN (1994) Magnetic detection of a single action potential in Chara corallina

    Google Scholar 

  • Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029

    Google Scholar 

  • Walker MM, Kirschvink JL, Chang S-BR, Dizon AE (1984) A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares

    Google Scholar 

  • Wassermann E, Epstein C, Ziemann U (2008) Oxford Handbook of transcranial stimulation. Oxford University Press, Oxford

    Google Scholar 

  • Wijesinghe R (2010) Magnetic measurements of peripheral nerve function using a neuromagnetic current probe. Exp Biol Med 235:159–169

    Google Scholar 

  • Wikswo JP Jr (1980) Noninvasive magnetic detection of cardiac mechanical activity: theory. Med Phys 7:297–306

    Google Scholar 

  • Wikswo JP Jr (1995a) SQUID magnetometers for biomagnetism and nondestructive testing: important questions and initial answers. IEEE Trans Appl Superconduct 5(2):74–120

    Google Scholar 

  • Wikswo JP Jr (1995b) Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect. In Zipes DP, Jalife J (eds) Cardiac electrophysiology: from cell to bedside, 2nd ed. Saunders, Philadelphia, pp 348–361

    Google Scholar 

  • Wikswo JP Jr, Gevins A, Williamson SJ (1993) The future of the EEG and MEG. Electroencephalogr Clin Neurophysiol 87:1–9

    Google Scholar 

  • Woosley JK, Roth BJ, Wikswo JP Jr (1985) The magnetic field of a single axon; A volume conductor model. Math Biosci 76:1–36

    Google Scholar 

  • Xu Y, He B (2005) Magnetoacoustic tomography with magnetic induction (MAT-MI). Phys Med Biol 50:5175–5187

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell K. Hobbie .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hobbie, R., Roth, B. (2015). Biomagnetism. In: Intermediate Physics for Medicine and Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-12682-1_8

Download citation

Publish with us

Policies and ethics