Skip to main content

Tracked Ultrasound in Navigated Spine Interventions

  • Chapter
  • First Online:
Book cover Spinal Imaging and Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 18))

Abstract

Ultrasound is an increasingly popular imaging modality in image-guided interventions, due to its safety, accessibility, and low cost. But ultrasound imaging has a steep learning curve, and requires significant coordination skills from the operator. It is difficult to interpret cross-sectional anatomy in arbitrary angles, and even more challenging to orient a needle with respect to the ultrasound plane. Position tracking technology is a promising augmentation method to ultrasound imaging. Both the ultrasound transducer and the needle can be tracked, enabling computer-assisted navigation applications in ultrasound-guided spinal interventions. Furthermore, the patient can also be tracked, which enables fusion of other imaging modalities with ultrasound. In this chapter, we first present the technical background of tracked ultrasound. We will review how to build research systems from commercially available components and open-source software. Then we will review some spine-related applications of tracked ultrasound modality, including procedural skills training, needle navigation for anesthesia, surgical navigation, and other potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen CP, Lew HL, Tsai WC, Hung YT, Hsu CC (2011) Ultrasound-guided injection techniques for the low back and hip joint. Am J Phys Med Rehabil 90(10):860–867

    Article  Google Scholar 

  2. Carbajal G, Lasso A, Gómez A, Fichtinger G (2013) Improving N-wire phantom-based freehand ultrasound calibration. Int J Comput Assist Radiol Surg 8(6):1063–1072

    Article  Google Scholar 

  3. Lasso A, Heffter T, Pinter C, Ungi T, Fichtinger G (2012) Implementation of the PLUS open-source toolkit for translational research of ultrasound-guided intervention systems. MIDAS J Med Imaging Comput (http://hdl.handle.net/10380/3367)

  4. Palter VN, Grantcharov TP (2010) Simulation in surgical education. CMAJ 182(11):1191–1196

    Article  Google Scholar 

  5. Uppal V, Kearns RJ, McGrady EM (2011) Evaluation of M43B Lumbar puncture simulator-II as a training tool for identification of the epidural space and lumbar puncture. Anaesthesia 66(6):493–496

    Article  Google Scholar 

  6. Moult E, Ungi T, Welch M, Lu J, McGraw RC, Fichtinger G (2013) Ultrasound-guided facet joint injection training using Perk Tutor. Int J Comput Assist Radiol Surg 8(5):831-6

    Google Scholar 

  7. Yeo CT, Ungi T, U-Thainual P, Lasso A, McGraw RC, Fichtinger G (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58(7):2031–7

    Google Scholar 

  8. Datta V, Mandalia M, Mackay S, Chang A, Cheshire N, Darzi A (2002) Relationship between skill and outcome in the laboratory-based model. Surgery 131(3):318–323

    Article  Google Scholar 

  9. Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230

    Article  Google Scholar 

  10. Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. Med Image Comput Comput Assist Interv 12(Pt 1):435–442

    Google Scholar 

  11. Ungi T, Sargent D, Moult E, Lasso A, Pinter C, McGraw RC, Fichtinger G (2012) Perk Tutor: an open-source training platform for ultrasound-guided needle insertions. IEEE Trans Biomed Eng 59(12):3475–3481

    Article  Google Scholar 

  12. Bartha L, Lasso A, Pinter C, Ungi T, Keri Z, Fichtinger G (2013) Open-source surface mesh-based ultrasound-guided spinal intervention simulator. Int J Comput Assist Radiol Surg 8(6):1043–51

    Google Scholar 

  13. Galiano K, Obwegeser AA, Bodner G, Freund M, Maurer H, Kamelger FS, Schatzer R, Ploner F (2005) Ultrasound guidance for facet joint injections in the lumbar spine: a computed tomography-controlled feasibility study. Anesth Analg 101(2):579–583

    Article  Google Scholar 

  14. Loizides A, Peer S, Plaikner M, Spiss V, Galiano K, Obernauer J, Gruber H (2011) Ultrasound-guided injections in the lumbar spine. Med Ultrason 13(1):54–58

    Google Scholar 

  15. Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. Med Image Comput Assist Interv 12(Pt 1):516–523

    Google Scholar 

  16. Ungi T, Abolmaesumi P, Jalal R, Welch M, Ayukawa I, Nagpal S, Lasso A, Jaeger M, Borschneck DP, Fichtinger G, Mousavi P (2012) Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans Biomed Eng 59(10):2766–2772

    Google Scholar 

  17. Gill S, Abolmaesumi P, Fichtinger G, Boisvert J, Pichora D, Borshneck D, Mousavi P (2012) Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med Image Anal 16(3):662–674

    Article  Google Scholar 

  18. Khallaghi S, Mousavi P, Gong RH, Gill S, Boisvert J, Fichtinger G, Pichora D, Borschneck D, Abolmaesumi P (2010) Registration of a statistical shape model of the lumbar spine to 3D ultrasound images. Med Image Comput Comput Assist Interv 13(Pt 2):68–75

    Google Scholar 

  19. Ungi T, Moult E, Schwab JH, Fichtinger G (2013) Tracked ultrasound snapshots in percutaneous pedicle screw placement navigation: a feasibility study. Clin Orthop Relat Res 471(12):4047–4055

    Google Scholar 

  20. Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS 3rd, Boice JD Jr (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst 81(17):1307–1312

    Article  Google Scholar 

  21. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 25(16):2052–2063

    Google Scholar 

  22. Schmitz-Feuerhake I, Pflugbeil S (2011) ‘Lifestyle’ and cancer rates in former East and West Germany: the possible contribution of diagnostic radiation exposures. Radiat Prot Dosimetry 147(1–2):310–313

    Google Scholar 

  23. Beauchamp M, Labelle H, Grimard G, Stanciu C, Poitras B, Dansereau J (1993) Diurnal variation of Cobb angle measurement in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 18(12):1581–1583

    Google Scholar 

  24. Malfair D, Flemming AK, Dvorak MF et al (2010) Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 194(3 suppl):S8–S22

    Article  Google Scholar 

  25. Sardjono TA, Wilkinson MH, Veldhuizen AG, van Ooijen PM, Purnama KE, Verkerke GJ (2013) Automatic Cobb angle determination from X-ray images. Spine (Phila Pa 1976)

    Google Scholar 

  26. Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G (2013) Spinal curvature measurement by tracked ultrasound snapshots. Ultrasound Med Biol (in press)

    Google Scholar 

  27. Yan CX, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7:901–909

    Article  Google Scholar 

  28. Herring JL, Dawant BM, Maurer CR Jr, Muratore DM, Galloway RL, Fitzpatrick JM (1998) Surface-based registration of CT images to physical space for image-guided surgery of the spine: a sensitivity study. IEEE Trans Med Imaging 17:743–52

    Google Scholar 

  29. Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39:3154–3166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamas Ungi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ungi, T., Lasso, A., Fichtinger, G. (2015). Tracked Ultrasound in Navigated Spine Interventions. In: Li, S., Yao, J. (eds) Spinal Imaging and Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-12508-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12508-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12507-7

  • Online ISBN: 978-3-319-12508-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics