Skip to main content

Microbiome Ecosystem Ecology: Unseen Majority in an Anthropogenic Ecosystem

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Ecology ((BRIEFSECOLOGY))

Abstract

Microbiome or microbial diversity is the dominant component of the Earth’s biodiversity. Though present everywhere, the abundance of microbiome varies across different habitats depending on prevailing environmental and biogeographic conditions. Microbiome possesses a central role in general ecosystem ecology in addition to having tremendous applications in agricultural, industrial, and biomedical research. In the recent years, there has been a resurgence of interest to investigate global microbiome diversity (e.g., human, animal, plant, soil, air, ocean, and atmosphere, etc.) within the context of classical community ecology research in an effort to understand the functional role of this tiny majority in performing different services for human well-being. However, since a vast majority of the Earth’s microbiome is uncultured, microbial studies are largely survey-based descriptive reports resulting from DNA fingerprinting, thus making it difficult to link individual microbiome species to attribute to certain ecosystem service or function. This becomes more challenging in an era in which microbiome diversity across spatio-temporal scales is subjected to tremendous alterations in the ecosystem caused by land use and climate changes. Improving culture-dependent and-independent methods with broader applications of eco-statistical approaches may advance the understanding of global microbiome diversity, and thus could help us utilize microbiome resources more efficiently and effectively in this changing world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson AF, Lindberg M, Jakobsson H et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836. doi:10.1371/journal.pone.0002836

    Article  PubMed Central  PubMed  Google Scholar 

  • Andersson AF, Riemann L, Bertilsson S (2009) Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J 4:171–181. doi:10.1038/ismej.2009.108

    Article  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362. doi:10.1016/j.tibtech.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Hussain S, Saleem M (2008) Optimization of environmental parameters for biodegradation of alpha and beta endosulfan in soil slurry by Pseudomonas aeruginosa. J Appl Microbiol 104:364–370. doi:10.1111/j.1365-2672.2007.03561.x

    CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. doi:10.1038/nature09944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barraclough T, Balbi K, Ellis R (2012) Evolving concepts of bacterial species. Evolut Biol 39:148–157. doi:10.1007/s11692-012-9181-8

    Article  Google Scholar 

  • Bowers RM, Lauber CL, Wiedinmyer C et al (2009) Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol 75:5121–5130. doi:10.1128/AEM.00447-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burke C, Steinberg P, Rusch D et al (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293. doi:10.1073/pnas.1101591108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Didelot X, Held NL et al (2012) Patterns of gene flow define species of thermophilic archaea. PLoS Biol 10:e1001265. doi:10.1371/journal.pbio.1001265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. doi:10.1038/nrg3182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claridge MF, Dawah HA & Wilson MR (1997) Species: the units of biodiversity. Chapman & Hall Ltd.

    Google Scholar 

  • Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26:167–176. doi:10.1093/molbev/msn236

    Article  CAS  PubMed  Google Scholar 

  • Costello EK, Lauber CL, Hamady M et al (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499. doi:10.1073/pnas.142680199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449:811–818. doi:10.1038/nature06245

    Article  CAS  PubMed  Google Scholar 

  • Enwall K, Throback IN, Stenberg M et al (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76:2243–2250. doi:10.1128/AEM02197-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS et al (2011) Trophic downgrading of planet Earth. Science 333:301–306. doi:10.1126/science.1205106

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Lennon JT (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98(3):439–448. doi:10.3732/ajb.1000498

    Article  PubMed  Google Scholar 

  • Fierer N, Breitbart M, Nulton J et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066. doi:10.1128/AEM.00358-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999. doi:10.1073/pnas.0807920105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fraser C, Alm EJ, Polz MF et al (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746. doi:10.1126/science.1159388

    Article  CAS  PubMed  Google Scholar 

  • Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6:167–169. doi:10.1046/j.0022-202x.2001.00039.x

    Article  CAS  PubMed  Google Scholar 

  • Gaidos E, Marteinsson V, Thorsteinsson T et al (2008) An oligarchic microbial assemblage in the anoxic bottom waters of a volcanic subglacial lake. ISME J 3:486–497. doi:10.1038/ismej.2008.124

    Article  PubMed  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG et al (2005) Re-evaluating prokaryotic species. Nat Rev Micro 3:733–739. doi:10.1038/nrmicro1236

    Article  CAS  Google Scholar 

  • Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043. doi:10.1126/science.1153475

    Article  CAS  PubMed  Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Micro 9:244–253. doi:10.1038/nrmicro2537

    Article  CAS  Google Scholar 

  • Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361:1917–1927. doi:10.1098/rstb.2006.1917

    Article  PubMed Central  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. doi:10.1128/MMBR.68.4.669-685.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huber JA, Welch DBM, Morrison HG et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100. doi:10.1126/science.1146689

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of alpha- and beta-endosulfan by soil bacteria. Biodegradation 18:731–740. doi:10.1007/s10532-007-9102-1

    Article  CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009a) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39:843–907. doi:10.1080/10643380801910090

    Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009b) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advan Agron 102:159–200

    Google Scholar 

  • Hussain S, Arshad M, Shaharoona B, Saleem M, Khalid A (2009c) Concentration dependent growth/non-growth linked kinetics of endosulfan biodegradation by Pseudomonas aeruginosa. World J Microbiol Biotechnol 25(5):853–858. doi:10.1007/s11274-009-9958-9

    Google Scholar 

  • Keijser BJF, Zaura E, Huse SM et al (2008) Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 87:1016–1020. doi:10.1177/154405910808701104

    Google Scholar 

  • Lederberg J, Mccray A (2001) The scientist: ‘ome sweet’ omics—a genealogical treasury of words. The Sci 17(7)

    Google Scholar 

  • Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Micro 9:119–130. doi:10.1038/nrmicro2504

    Article  CAS  Google Scholar 

  • Logue JB, Bürgmann H, Robinson CT (2008) Progress in the ecological genetics and biodiversity of freshwater bacteria. Bioscience 58:103. doi:10.1641/B580205

    Article  Google Scholar 

  • Luo C, Walk ST, Gordon DM et al (2011) Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108:7200–7205. doi:10.1073/pnas.1015622108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F et al (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5:574–579. doi:10.1038/ismej.2010.149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Micro 4:102–112. doi:10.1038/nrmicro1341

    Article  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species, from the viewpoint of a zoologist. Harvard University Press

    Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR et al (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392. doi:10.1111/j.1462-2920.2009.02075.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morlon H, Kemps BD, Plotkin JB, Brisson D (2012) Explosive radiation of a bacterial species group. Evolution Int J org Evolution. doi:10.1111/j.1558-5646.2012.01598.x

    Google Scholar 

  • Moya A, Peretó J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote–animal symbioses. Nat Rev Genet 9:218–229. doi:10.1038/nrg2319

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553. doi:10.1073/pnas.1302837110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prosser JI, Bohannan BJM, Curtis TP et al (2007) The role of ecological theory in microbial ecology. Nat Rev Micro 5:384–392. doi:10.1038/nrmicro1643

    Article  CAS  Google Scholar 

  • Ramette A, Tiedje JM (2006) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207. doi:10.1007/s00248-005-5010-2

    Article  Google Scholar 

  • Ravel J, Gajer P, Abdo Z et al (2011) Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108(Suppl 1):4680–4687. doi:10.1073/pnas.1002611107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Retchless AC, Lawrence JG (2007) Temporal fragmentation of speciation in bacteria. Science 317:1093–1096. doi:10.1126/science.1144876

    Article  CAS  PubMed  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. doi:10.1038/ismej.2007.53

    Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67. doi:10.1111/j.1574-6976.2001.tb00571.x

    Article  PubMed  Google Scholar 

  • Saleem M (2012). Bacteria-protist interactions in the context of biodiversity and ecosystem functioning research (Doctoral dissertation)

    Google Scholar 

  • Saleem M, Moe LA (2014) Multitrophic microbial interactions for eco- and agro-biotechnological processes: theory and practice. Trends Biotechnol 32(10):529–537. doi:10.1016/j.tibtech.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008). Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161. doi:10.1016/j.biotechadv.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Dormann CF et al (2012) Predator richness increases the effect of prey diversity on prey yield. Nat Commun 3:1305. doi:10.1038/ncomms2287

    Article  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2013) Diversity of protists and bacteria determines predation performance and stability. ISME J 7:1912–1921. doi:10.1038/ismej.2013.95

    Article  PubMed Central  PubMed  Google Scholar 

  • Saleem M, Fetzer I, Harms H, Chatzinotas A (2015) Trophic complexity in aqueous systems: Bacterial species richness and protistan predation regulate DOC and DTN removal

    Google Scholar 

  • Sharp M, Parkes J, Cragg B et al (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110. doi:10.1130/0091-7613(1999)027:WBPAGB2.3.CO;2

    Article  CAS  Google Scholar 

  • Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526. doi:10.1128/AEM.00946-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith NH, Gordon SV, Rua-Domenech R de la et al (2006) Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nat Rev Microbiol 4:670–681. doi:10.1038/nrmicro1472

    Article  CAS  PubMed  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120. doi:10.1073/pnas.0605127103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296:1064–1066. doi:10.1126/science.1071698

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258. doi:10.1038/ismej.2013.119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaahtovuo J, Korkeamäki M, Munukka E et al (2005) Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J Microbiol Methods 63:276–286. doi:10.1016/j.mimet.2005.03.017

    Article  CAS  PubMed  Google Scholar 

  • Vellend M (2010) Conceptual synthesis in community ecology. Quart Rev Biol 85:183–206. doi:10.1086/652373

    Article  PubMed  Google Scholar 

  • Vos M (2011) A species concept for bacteria based on adaptive divergence. Trends Microbiol 19:1–7. doi:10.1016/j.tim.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Saleem .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saleem, M. (2015). Microbiome Ecosystem Ecology: Unseen Majority in an Anthropogenic Ecosystem. In: Microbiome Community Ecology. SpringerBriefs in Ecology. Springer, Cham. https://doi.org/10.1007/978-3-319-11665-5_1

Download citation

Publish with us

Policies and ethics