Skip to main content

Treewidth and the Computational Complexity of MAP Approximations

  • Conference paper
Probabilistic Graphical Models (PGM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8754))

Included in the following conference series:

Abstract

The problem of finding the most probable explanation to a designated set of variables (the MAP problem) is a notoriously intractable problem in Bayesian networks, both to compute exactly and to approximate. It is known, both from theoretical considerations and from practical experiences, that low treewidth is typically an essential prerequisite to efficient exact computations in Bayesian networks. In this paper we investigate whether the same holds for approximating MAP. We define four notions of approximating MAP (by value, structure, rank, and expectation) and argue that all of them are intractable in general. We prove that efficient value-, structure-, and rank-approximations of MAP instances with high treewidth will violate the Exponential Time Hypothesis. In contrast, we hint that expectation-approximation can be done efficiently, even in MAP instances with high treewidth, if the most probable explanation has a high probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelbar, A.M., Hedetniemi, S.M.: Approximating MAPs for belief networks is NP-hard and other theorems. Artificial Intelligence 102, 21–38 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  4. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press (2009)

    Google Scholar 

  5. De Campos, C.P.: New complexity results for MAP in Bayesian networks. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, pp. 2100–2106 (2011)

    Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Google Scholar 

  7. Hamilton, M., Müller, M., van Rooij, I., Wareham, H.T.: Approximating solution structure. In: Demaine, E., Gutin, G.Z., Marx, D., Stege, U. (eds.) Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar Proceedings, vol. (07281) (2007)

    Google Scholar 

  8. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. Journal of Computer and System Sciences 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krentel, M.W.: The complexity of optimization problems. Journal of Computer and System Sciences 36, 490–509 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kwisthout, J.: The computational complexity of probabilistic inference. Technical Report ICIS–R11003, Radboud University Nijmegen (2011)

    Google Scholar 

  11. Kwisthout, J.: Most probable explanations in Bayesian networks: Complexity and tractability. International Journal of Approximate Reasoning 52(9), 1452–1469 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kwisthout, J.: Structure approximation of most probable explanations in Bayesian networks. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS (LNAI), vol. 7958, pp. 340–351. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Kwisthout, J., Bodlaender, H.L., van der Gaag, L.C.: The necessity of bounded treewidth for efficient inference in Bayesian networks. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 237–242. IOS Press (2010)

    Google Scholar 

  14. Kwisthout, J.H.P., Bodlaender, H.L., van der Gaag, L.C.: The complexity of finding kth most probable explanations in probabilistic networks. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 356–367. Springer, Heidelberg (2011)

    Google Scholar 

  15. Kwisthout, J., van Rooij, I.: Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research 24, 2–8 (2013)

    Article  Google Scholar 

  16. Marx, D.: Can you beat treewidth? In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 169–179 (2007)

    Google Scholar 

  17. Park, J.D., Darwiche, A.: Complexity results and approximation settings for MAP explanations. Journal of Artificial Intelligence Research 21, 101–133 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of tree-width. Journal of Algorithms 7, 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kwisthout, J. (2014). Treewidth and the Computational Complexity of MAP Approximations. In: van der Gaag, L.C., Feelders, A.J. (eds) Probabilistic Graphical Models. PGM 2014. Lecture Notes in Computer Science(), vol 8754. Springer, Cham. https://doi.org/10.1007/978-3-319-11433-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11433-0_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11432-3

  • Online ISBN: 978-3-319-11433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics