Skip to main content

A Real-World Framework for Translator as Expert Retrieval

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8685))

Abstract

This article describes a method and tool to identify expert translators in an on-demand translation service. We start from existing efforts on expert retrieval and factor in additional parameters based on the real-world scenario of the task. The system first identifies topical expertise using an aggregation function over relevance scores of previously translated documents by each translator, and then a learning to rank method to factor in non-topical relevance factors that are part of the decision-making process of the user, such as price and duration of translation. We test the system on a manually created test collection and show that the method is able to effectively support the user in selecting the best translator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grefenstette, G., Wilber, L.: Search Based Applications. Morgan & Claypool Publishers (2011)

    Google Scholar 

  2. Balog, K., Bogers, T., Azzopardi, L., de Rijke, M., van den Bosch, A.: Broad expertise retrieval in sparse data environments. In: Proc. of SIGIR (2007)

    Google Scholar 

  3. Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si., L.: Expertise retrieval. Foundations and Trends in Information Retrieval 6 (2012)

    Google Scholar 

  4. Deng, H., King, I., Lyu, M.R.: Enhanced models for expertise retrieval using community-aware strategies. IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics (2012)

    Google Scholar 

  5. Cao, Y., Liu, J., Bao, S., Li, H.: Research on expert search at enterprise track of trec 2005. In: Proc. of TREC (2005)

    Google Scholar 

  6. Macdonald, C., Ounis, I.: Learning Models for Ranking Aggregates. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 517–529. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Hang, L.I.: A short introduction to learning to rank. Transactions on Information and Systems (2011)

    Google Scholar 

  8. Cummins, R., Lalmas, M., O’Riordan, C.: Learning aggregation functions for expert search. In: Proc. of ECAI (2010)

    Google Scholar 

  9. Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: Proc. of CIKM (2006)

    Google Scholar 

  10. Lie, T.Y.: Learning to rank for information retrieval. Foundations and Trends in Information Retrieval. Springer (2011)

    Google Scholar 

  11. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proc. of ICML (2005)

    Google Scholar 

  12. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for combining preferences (1998)

    Google Scholar 

  13. Burges, C.C.J., Ragno, R., Le, V.Q.: Learning to rank with nonsmooth cost functions. MIT Press (2006)

    Google Scholar 

  14. Wu, Q., Burges, C.J.C., Svore, K.M., Gao, J.: Adapting boosting for information retrieval measures. Springer Science (2009)

    Google Scholar 

  15. Xu, J., Li, H.: Adarank: A boosting algorithm for information retrieval. In: Procs of SIGIR (2007)

    Google Scholar 

  16. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise approach to listwise approach. In: Procs of ICML (2007)

    Google Scholar 

  17. Macdonald, C., Santos, R.L., Ounis, I.: The whens and hows of learning to rank for web search. Inf. Retr. 16 (2013)

    Google Scholar 

  18. Chapelle, O., Zhang, Y.: Expected reciprocal rank for graded relevance. In: Proc. of CIKM (2009)

    Google Scholar 

  19. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: Proc. of WSDM (2008)

    Google Scholar 

  20. Büttcher, S., Clarke, C.L.A., Yeung, P.C.K., et al.: Reliable information retrieval evaluation with incomplete and biased judgements (2007)

    Google Scholar 

  21. Best, D.J., Roberts, D.E.: Algorithm as 89: The upper tail probabilities of spearman’s rho. Journal of the Royal Statistical Society. Series C (Applied Statistics) 24 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rekabsaz, N., Lupu, M. (2014). A Real-World Framework for Translator as Expert Retrieval. In: Kanoulas, E., et al. Information Access Evaluation. Multilinguality, Multimodality, and Interaction. CLEF 2014. Lecture Notes in Computer Science, vol 8685. Springer, Cham. https://doi.org/10.1007/978-3-319-11382-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11382-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11381-4

  • Online ISBN: 978-3-319-11382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics