Skip to main content

Inorganic Nanoparticles in Targeted Drug Delivery and Imaging

  • Chapter
  • First Online:

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

One of the major aims in modern nanomedicine is to develop delivery platforms for targeted delivery of therapeutics or imaging agents for improved therapeutic efficacy, reduced side effects, and increased diagnostic sensitivity. In this context, nanomaterials are advancing in several directions with significant progress being achieved with respect to their synthesis, functionalization, and biomedical applications. Currently, active and passive targeting and controlled drug release constitute some of the crucial functions identified to achieve a medical purpose. The limitation in targeting is currently associated, for example, with slow clearance, and systemic and local toxicity. Inorganic nanomaterials have been recognized for controllable properties on many levels for biomedical applications, such as mesoporous silica and silicon materials, gold, silver, quantum dots, and magnetic nanoparticles. These materials have great potential for cell labelling, biosensing, in vivo and magnetic imaging, targeting, and diagnostics. In this chapter, we start by introducing briefly some of the important aspects of inorganic nanoparticles in nanomedicine and describe their potential applications as nanocarriers or agents for biomedical applications, particularly for imaging/diagnostics and targeting. We then address some of the important aspects of the inorganic nanomaterials, including mesoporous silica and silicon materials, gold, silver, quantum dots, and magnetic nanoparticles in terms of their fabrication and synthesis, targeting, and imaging properties relevant for biomedical applications. Finally, we conclude the chapter with a brief overview of our visions of the future of the inorganic nanomaterials in drug delivery applications and their potentials for further translation into clinic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine part 1. Drug/gene delivery applications. Drug Discov Today 12:650–656

    CAS  PubMed  Google Scholar 

  2. Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine part 2: imaging, diagnostic, and therapeutic applications. Drug Discov Today 12:657–663

    CAS  PubMed  Google Scholar 

  3. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433

    CAS  PubMed  Google Scholar 

  4. Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 2. Nanomedicine 6:612–618

    CAS  PubMed  Google Scholar 

  5. Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine–part 1. Nanomedicine 6:516–522

    CAS  PubMed  Google Scholar 

  6. Alkilany AM, Lohse SE, Murphy CJ (2012) The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 46:650–661

    PubMed  Google Scholar 

  7. Salonen J, Kaukonen AM, Hirvonen J, Lehto V-P (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97:632–653

    CAS  PubMed  Google Scholar 

  8. Santos HA, Bimbo LM, Lehto V-P, Airaksinen AJ, Salonen J, Hirvonen J (2011) Multifunctional porous silicon for therapeutic drug delivery and imaging. Curr Drug Discov Technol 8:228–249

    CAS  PubMed  Google Scholar 

  9. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    CAS  PubMed  Google Scholar 

  10. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    CAS  PubMed  Google Scholar 

  11. Salonen J, Laitinen L, Kaukonen AM, Tuura J, Bjorkqvist M, Heikkila T, Vaha-Heikkila K, Hirvonen J, Lehto V-P (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362–374

    CAS  PubMed  Google Scholar 

  12. Shegokar R, Muller RH (2010) Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399:129–139

    CAS  PubMed  Google Scholar 

  13. Muller RH, Shegokar R, Keck CM (2011) 20 years of lipid nanoparticles (sln and nlc): present state of development and industrial applications. Curr Drug Discov Technol 8:207–227

    PubMed  Google Scholar 

  14. Muller RH, Keck CM (2012) Twenty years of drug nanocrystals: where are we, and where do we go? Eur J Pharm Biopharm 80:1–3

    CAS  PubMed  Google Scholar 

  15. Devadasu VR, Bhardwaj V, Kumar MN (2013) Can controversial nanotechnology promise drug delivery? Chem Rev 113:1686–1735

    CAS  PubMed  Google Scholar 

  16. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  17. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    CAS  PubMed  Google Scholar 

  18. Sapra P, Allen TM (2002) Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 62:7190–7194

    CAS  PubMed  Google Scholar 

  19. Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    CAS  Google Scholar 

  20. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Rosenholm JM, Sahlgren C, Linden M (2011) Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets 12:1166–1186

    CAS  PubMed  Google Scholar 

  22. Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454

    CAS  Google Scholar 

  23. Paik T, Gordon TR, Prantner AM, Yun H, Murray CB (2013) Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes. ACS Nano 7:2850–2859

    CAS  PubMed  Google Scholar 

  24. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    CAS  PubMed  Google Scholar 

  25. Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for mri contrast agents. Adv Mater 21:2133–2148

    CAS  Google Scholar 

  26. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    CAS  PubMed  Google Scholar 

  27. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    CAS  PubMed  Google Scholar 

  28. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135:1438–1444

    CAS  PubMed  Google Scholar 

  30. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    CAS  Google Scholar 

  31. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    CAS  Google Scholar 

  32. Lin Y-S, Tsai C-P, Huang H-Y, Kuo C-T, Hung Y, Huang D-M, Chen Y-C, Mou C-Y (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573

    CAS  Google Scholar 

  33. Vivero-Escoto JL, Slowing I, Trewyn BG, Lin VS (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6:1952–1967

    CAS  PubMed  Google Scholar 

  34. Zhao Y, Vivero-Escoto JL, Slowing I, Trewyn BG, Lin VS (2010) Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opin Drug Deliv 7:1013–1029

    CAS  PubMed  Google Scholar 

  35. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    CAS  PubMed  Google Scholar 

  36. Li ZX, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev 41:2590–2605

    CAS  PubMed  Google Scholar 

  37. Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    CAS  PubMed  Google Scholar 

  38. Vivero-Escoto JL, Huxford-Phillips RC, Lin W (2012) Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev 41:2673–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Yanes RE, Tamanoi F (2012) Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3:389–404

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Wang K, He X, Yang X, Shi H (2013) Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Res. Publication ahead of print, Acc Chem

    Google Scholar 

  41. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of mcm-41: drug delivery system. Chem Mater 13:308–311

    CAS  Google Scholar 

  42. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1272–7863(114):10834–10843

    Google Scholar 

  43. Rosenholm JM, Sahlgren C, Linden M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - opportunities & challenges. Nanoscale 2:1870–1883

    CAS  PubMed  Google Scholar 

  44. Wu S-H, Hung Y, Mou C-Y (2011) Mesoporous silica nanoparticles as nanocarriers. Chem Comm 47:9972–9985

    CAS  PubMed  Google Scholar 

  45. Kapoor MP, Fujii W, Yanagi M, Kasama Y, Kimura T, Nanbu H, Juneja LR (2008) Environmental friendly rapid mass production synthetic process of highly ordered nanometer sized mesoporous silica using a combination of acid–base and evaporation approach. Micropor Mesopor Mat 116:370–377

    CAS  Google Scholar 

  46. He Q, Cui X, Cui F, Guo L, Shi J (2009) Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Micropor Mesopor Mat 117:609–616

    CAS  Google Scholar 

  47. Feng X, Fryxell GE, Wang L-Q, Kim AY, Liu J, Kemner KM (1997) Functionalized monolayers on ordered mesoporous supports. Science 276:923–926

    CAS  Google Scholar 

  48. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Korotcenkov G, Cho BK (2010) Silicon porosification: state of the art. Crit Rev Solid State Mater Sci 35:153–260

    CAS  Google Scholar 

  50. Salonen J, Lehto V-P, Björkqvist M, Laine E, Niinistö L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Status Solidi A 182:123–126

    CAS  Google Scholar 

  51. Park J-H, Gu L, Maltzahn GV, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4:3023–3032

    CAS  PubMed  Google Scholar 

  53. Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M (2011) Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta 1810:317–329

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu XW (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22:4225–4235

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Salonen J, Björkqvist M, Laine E, Niinistö L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225:389–394

    CAS  Google Scholar 

  56. Salonen J, Lehto V-P (2008) Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 137:162–172

    CAS  Google Scholar 

  57. Sarparanta M, Makila E, Heikkila T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18f-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806

    CAS  PubMed  Google Scholar 

  58. Santos HA, Riikonen J, Salonen J, Makila E, Heikkila T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration, surface chemistry and size. Eur J Pharm Biopharm 6:2721–2731

    CAS  Google Scholar 

  59. Bimbo LM, Makila E, Raula J, Laaksonen T, Laaksonen P, Strommer K, Kauppinen EI, Salonen J, Linder MB, Hirvonen J, Santos HA (2011) Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32:9089–9099

    CAS  PubMed  Google Scholar 

  60. Kilpelainen M, Monkare J, Vlasova MA, Riikonen J, Lehto V-P, Salonen J, Jarvinen K, Herzig KH (2011) Nanostructured porous silicon microparticles enable sustained peptide (melanotan ii) delivery. Eur J Pharm Biopharm 77:20–25

    CAS  PubMed  Google Scholar 

  61. Sarparanta M, Bimbo LM, Rytkonen J, Makila E, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ (2012) Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol Pharm 9:654–663

    CAS  PubMed  Google Scholar 

  62. Sarparanta MP, Bimbo LM, Makila EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33:3353–3362

    CAS  PubMed  Google Scholar 

  63. Liu D, Mäkilä E, Zhang H, Herranz B, Kaasalainen M, Kinnari P, Salonen J, Hirvonen J, Santos HA (2013) Nanostructured porous silicon-solid lipid nanocomposite: towards enhanced cytocompatibility and stability, reduced cellular association, and prolonged drug release. Adv Funct Mater 23:1893–1902

    CAS  Google Scholar 

  64. Boukherroub R, Wojtyk JTC, Wayner DDM, Lockwood DJ (2002) Thermal hydrosilylation of undecylenic acid with porous silicon. J Electrochem Soc 149:H59–H63

    CAS  Google Scholar 

  65. Sciacca B, Secret E, Pace S, Gonzalez P, Geobaldo F, Quignard F, Cunin F (2011) Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem 21:2294–2302

    CAS  Google Scholar 

  66. Kovalainen M, Monkare J, Makila E, Salonen J, Lehto V-P, Herzig KH, Jarvinen K (2012) Mesoporous silicon (psi) for sustained peptide delivery: effect of psi microparticle surface chemistry on peptide yy3-36 release. Pharm Res 29:837–846

    CAS  PubMed  Google Scholar 

  67. Zhang F, Sautter K, Larsen AM, Findley DA, Davis RC, Samha H, Linford MR (2010) Chemical vapor deposition of three aminosilanes on silicon dioxide: surface characterization, stability, effects of silane concentration, and cyanine dye adsorption. Langmuir 26:14648–14654

    CAS  PubMed  Google Scholar 

  68. Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH (2011) Dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27:9497–9503

    CAS  PubMed  Google Scholar 

  69. Arroyo-Hernández M, Martín-Palma RJ, Torres-Costa V, Martínez Duart JM (2006) Porous silicon optical filters for biosensing applications. J Non Cryst Solids 352:2457–2460

    Google Scholar 

  70. Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of a multistage delivery system. Small 6:1329–1340

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Makila E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28:14045–14054

    CAS  PubMed  Google Scholar 

  72. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of sirna and DNA constructs. ACS Nano 3:3273–3286

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2008) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206

    Google Scholar 

  75. Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, Mou CY, Chen CT, Lo LW (2010) Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J Mater Chem 20:6149–6157

    CAS  Google Scholar 

  76. Ferris DP, Lu J, Gothard C, Yanes R, Thomas CR, Olsen J-C, Stoddart JF, Tamanoi F, Zink JI (2011) Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 7:1816–1826

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Porta F, Lamers GEM, Morrhayim J, Chatzopoulou A, Schaaf M, Den Dulk H, Backendorf C, Zink JI, Kros A (2013) Folic acid-modified mesoporous silica nanoparticles for cellular and nuclear targeted drug delivery. Adv Healthc Mater 2:281–286

    CAS  PubMed  Google Scholar 

  78. Wang Z, Xu B, Zhang L, Zhang J, Ma T, Zhang J, Fu X, Tian W (2013) Folic acid-functionalized mesoporous silica nanospheres hybridized with aie luminogens for targeted cancer cell imaging. Nanoscale 5:2065–2072

    CAS  PubMed  Google Scholar 

  79. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Zhu CL, Song XY, Zhou WH, Yang HH, Wen YH, Wang XR (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on msn-pem-aptamer conjugates. J Mater Chem 19:7765–7770

    CAS  Google Scholar 

  81. Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Lindén M (2010) Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 6:1234–1241

    CAS  PubMed  Google Scholar 

  82. Bimbo LM, Makila E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32:2625–2633

    CAS  PubMed  Google Scholar 

  83. Bimbo LM, Sarparanta M, Makila E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4:3184–3192

    CAS  PubMed  Google Scholar 

  84. Santos HA, Hirvonen J (2012) Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine 7:1281–1284

    CAS  PubMed  Google Scholar 

  85. Vale N, Makila E, Salonen J, Gomes P, Hirvonen J, Santos HA (2012) New times, new trends for ethionamide: in vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur J Pharm Biopharm 81:314–323

    CAS  PubMed  Google Scholar 

  86. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320–327

    CAS  PubMed  Google Scholar 

  87. Van De Ven AL, Kim P, Haley OH, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S-H, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 158:148–155

    PubMed Central  PubMed  Google Scholar 

  88. Van de Ven AL, Wu M, Lowengrub J, Mcdougall SR, Chaplain MA, Cristini V, Ferrari M, Frieboes HB (2012) Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv 2:011208

    PubMed Central  Google Scholar 

  89. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    CAS  PubMed  Google Scholar 

  90. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010) Sustained small interfering rna delivery by mesoporous silicon particles. Cancer Res 70:3687–3696

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M (2011) Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res 44:979–989

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Upadhyay P (2006) Enhanced transdermal-immunization with diptheria-toxoid using local hyperthermia. Vaccine 24:5593–5598

    CAS  PubMed  Google Scholar 

  93. Mann AP, Tanaka T, Somasunderam A, Liu X, Gorenstein DG, Ferrari M (2011) E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater 23:H278–H282

    CAS  PubMed  Google Scholar 

  94. Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Angelis FD, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, Mecarini F, Candeloro P, Luberto L, Laurentiis AD, Das G, Scalac G, Fabrizio ED (2010) Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in b cells tumor context. Nanoscale 2:2230–2236

    PubMed  Google Scholar 

  96. Rytkonen J, Miettinen R, Kaasalainen M, Lehto V-P, Salonen J, Narvanen A (2012) Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J Nanomater 2012:9

    Google Scholar 

  97. Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ (2012) Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic cd40 antibody. Adv Mater 24:3981–3987

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    CAS  PubMed  Google Scholar 

  99. Koch R (1890) On bacteriological research. August Hirsch Forest, Berlin

    Google Scholar 

  100. Forestier J (1934) Rheumatoid arthritis and its treatment by gold salts. Lancet 224:646–648

    Google Scholar 

  101. Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S, Curran GL, Shah V, Curley S, Mukhopadhyay D, Robertson JD, Bhattacharya R, Mukherjee P (2011) Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS One 6:e20347

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Faraday M (1857) The bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans Roy Soc Lond 147:145–181

    Google Scholar 

  103. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  104. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    CAS  PubMed  Google Scholar 

  105. Nie X, Chen C (2012) Au nanostructures: an emerging prospect in cancer theranostics. Sci China Life Sci 55:872–883

    CAS  PubMed  Google Scholar 

  106. Giersig M, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413

    CAS  Google Scholar 

  107. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Comm 801–802

    Google Scholar 

  108. Templeton AC, Wuelfing WP, Murray RW (1999) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Google Scholar 

  109. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    CAS  PubMed  Google Scholar 

  110. Li D, He Q, Cui Y, Duan L, Li J (2007) Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability. Biochem Biophys Res Commun 355:488–493

    CAS  PubMed  Google Scholar 

  111. Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, Li L, Liang D, Li C (2009) Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials 30:1928–1936

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Thomas M, Klibanov AM (2003) Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc Natl Acad Sci U S A 100:9138–9143

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Choi CHJ, Alabi CA, Webster P, Davis ME (2010) Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci U S A 107:1235–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M (2008) Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 9:287–291

    Google Scholar 

  115. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    CAS  PubMed  Google Scholar 

  116. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834

    CAS  PubMed  Google Scholar 

  117. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80:1067–1072

    CAS  PubMed  Google Scholar 

  118. Silver S, Phung LT, Silver G (2006) Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J Ind Microbiol Biotechnol 33:627–634

    CAS  PubMed  Google Scholar 

  119. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. In: Ellis GP, Luscombe DK (eds) Progress in medicinal chemistry. Elsevier Science B.V, Amsterdam

    Google Scholar 

  120. Von Naegelli V (1893) Deut schr Schweiz Naturforsch Ges 33:174–182

    Google Scholar 

  121. Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    CAS  PubMed  Google Scholar 

  123. Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB (2004) Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62:1408–1410

    CAS  PubMed  Google Scholar 

  124. Fox CL (1968) Silver sulfadiazine—a new topical therapy for pseudomonas in burns. Arch Surg 96:184–188

    PubMed  Google Scholar 

  125. Furr JR, Russell AD, Turner TD, Andrews A (1994) Antibacterial activity of actisorb-plus, actisorb and silver-nitrate. J Hosp Infect 27:201–208

    CAS  PubMed  Google Scholar 

  126. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with hiv-1. J Nanobiotechnology 3:6

    PubMed Central  PubMed  Google Scholar 

  127. Nickel U, Zu Castell A, Pöppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced raman spectroscopy. Langmuir 16:9087–9091

    CAS  Google Scholar 

  128. Shirtcliffe N, Nickel U, Schneider S (1999) Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles. J Colloid Interface Sci 211:122–129

    CAS  PubMed  Google Scholar 

  129. Yin Y, Li Z-Y, Zhong Z, Gates B, Xia Y, Venkateswaran S (2002) Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem 12:522–527

    CAS  Google Scholar 

  130. Wu Q, Cao H, Luan Q, Zhang J, Wang Z, Warner JH, Watt A (2008) Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg Chem 47:5882–5888

    CAS  PubMed  Google Scholar 

  131. Percival SL, Bowler P, Woods EJ (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57

    PubMed  Google Scholar 

  132. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    CAS  PubMed  Google Scholar 

  133. Qureshi AT, Monroe WT, Lopez MJ, Janes ME, Dasa V, Park S, Amirsadeghi A, Hayes DJ (2011) Biocompatible/bioabsorbable silver nanocomposite coatings. J Appl Polym Sci 120:3042–3053

    CAS  Google Scholar 

  134. Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S (2010) Silver nano—a trove for retinal therapies. J Control Release 145:76–90

    CAS  PubMed  Google Scholar 

  135. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle − oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Brown PK, Qureshi AT, Moll AN, Hayes DJ, Monroe WT (2013) Silver nanoscale antisense drug delivery system for photoactivated gene silencing. ACS Nano 7:2948–2959

    CAS  PubMed  Google Scholar 

  137. Zheng Y, Li Y, Deng Z (2012) Silver nanoparticle-DNA bionanoconjugates bearing a discrete number of DNA ligands. Chem Comm 48:6160–6162

    CAS  PubMed  Google Scholar 

  138. Sur I, Cam D, Kahraman M, Baysal A, Culha M (2010) Interaction of multi-functional silver nanoparticles with living cells. Nanotechnol 21:175104

    Google Scholar 

  139. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99:12617–12621

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of inp quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371

    CAS  PubMed  Google Scholar 

  142. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    CAS  PubMed  Google Scholar 

  143. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of cdse − zns quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150

    CAS  Google Scholar 

  144. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    CAS  PubMed  Google Scholar 

  145. Zhou M, Ghosh I (2007) Quantum dots and peptides: a bright future together. Biopolymers 88:325–339

    CAS  PubMed  Google Scholar 

  146. Dif A, Boulmedais F, Pinot M, Roullier V, Baudy-Floc’h M, Coquelle FM, Clarke S, Neveu P, Vignaux F, Le Borgne R, Dahan M, Gueroui Z, Marchi-Artzner V (2009) Small and stable peptidic pegylated quantum dots to target polyhistidine-tagged proteins with controlled stoichiometry. J Am Chem Soc 131:14738–14746

    CAS  PubMed  Google Scholar 

  147. Lee H, Kim IK, Park TG (2010) Intracellular trafficking and unpacking of sirna/quantum dot-pei complexes modified with and without cell penetrating peptide: confocal and flow cytometric fret analysis. Bioconjug Chem 21:289–295

    CAS  PubMed  Google Scholar 

  148. Guo Y, Harirchian-Saei S, Izumi CM, Moffitt MG (2011) Block copolymer mimetic self-assembly of inorganic nanoparticles. ACS Nano 5:3309–3318

    CAS  PubMed  Google Scholar 

  149. Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into plga microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151:278–285

    CAS  PubMed  Google Scholar 

  150. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    CAS  PubMed  Google Scholar 

  151. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    CAS  PubMed  Google Scholar 

  152. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Irrera A, Artoni P, Iacona F, Pecora EF, Franzo G, Galli M, Fazio B, Boninelli S, Priolo F (2012) Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnology 23:075204

    CAS  PubMed  Google Scholar 

  154. Mazumder S, Dey R, Mitra MK, Mukherjee S, Das GC (2009) Review: biofunctionalized quantum dots in biology and medicine. J Nanomater 2009

    Google Scholar 

  155. Pöselt E, Fischer S, Foerster S, Weller H (2009) Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands. Langmuir 25:13906–13913

    PubMed  Google Scholar 

  156. Walling M, Novak J, Shepard JRE (2009) Quantum dots for live cell and in vivo imaging. Int J Mol Sci 10:441–491

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Yong K-T, Ding H, Roy I, Law W-C, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated inp quantum dots. ACS Nano 3:502–510

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Google Scholar 

  159. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    CAS  Google Scholar 

  160. Bhang SH, Won N, Lee TJ, Jin H, Nam J, Park J, Chung H, Park HS, Sung YE, Hahn SK, Kim BS, Kim S (2009) Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano 3:1389–1398

    CAS  PubMed  Google Scholar 

  161. Yan J-J, Wang H, Zhou Q-H, You Y-Z (2011) Reversible and multisensitive quantum dot gels. Macromol 44:4306–4312

    CAS  Google Scholar 

  162. Mi L, Xiong R, Zhang Y, Yang W, Chen J, Wang P (2011) Microscopic observation of the intercellular transport of cdte quantum dot aggregates through tunneling-nanotubes. J Biomater Nanobiotechnol 2:172–179

    Google Scholar 

  163. Paliwal S, Menon GK, Mitragotri S (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126:1095–1101

    CAS  PubMed  Google Scholar 

  164. Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA (2008) Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211

    CAS  PubMed  Google Scholar 

  165. Jeong SH, Kim JH, Yi SM, Lee JP, Kim JH, Sohn KH, Park KL, Kim M-K, Son SW (2010) Assessment of penetration of quantum dots through in vitro and in vivo human skin using the human skin equivalent model and the tape stripping method. Biochem Biophys Res Commun 394:612–615

    CAS  PubMed  Google Scholar 

  166. Prow TW, Monteiro-Riviere NA, Inman AO, Grice JE, Chen X, Zhao X, Sanchez WH, Gierden A, Kendall MF, Zvyagin AV, Erdmann D, Riviere JE, Roberts MS (2012) Quantum dot penetration into viable human skin. Nanotoxicol 6:173–185

    CAS  Google Scholar 

  167. Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    CAS  PubMed  Google Scholar 

  168. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165

    CAS  PubMed  Google Scholar 

  169. Popovic Z, Liu W, Chauhan VP, Lee J, Wong C, Greytak AB, Insin N, Nocera DG, Fukumura D, Jain RK, Bawendi MG (2010) A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 49:8649–8652

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    CAS  PubMed  Google Scholar 

  171. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    CAS  PubMed  Google Scholar 

  172. Wang CH, Hsu YS, Peng CA (2008) Quantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agents. Biosens Bioelectron 24:1018–1025

    PubMed  Google Scholar 

  173. Fan HM, Olivo M, Shuter B, Yi JB, Bhuvaneswari R, Tan HR, Xing GC, Ng CT, Liu L, Lucky SS, Bay BH, Ding J (2010) Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J Am Chem Soc 132:14803–14811

    CAS  PubMed  Google Scholar 

  174. Nikitin MP, Zdobnova TA, Lukash SV, Stremovskiy OA, Deyev SM (2010) Protein-assisted self-assembly of multifunctional nanoparticles. Proc Natl Acad Sci U S A 107:5827–5832

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Chen T, Zhao T, Wei D, Wei Y, Li Y, Zhang H (2013) Core-shell nanocarriers with zno quantum dots-conjugated au nanoparticle for tumor-targeted drug delivery. Carbohydr Polym 92:1124–1132

    CAS  PubMed  Google Scholar 

  176. Dobson J (2008) Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol 3:139–143

    CAS  PubMed  Google Scholar 

  177. El Haj AJ, Glossop JR, Sura HS, Lees MR, Hu B, Wolbank S, Van Griensven M, Redl H, Dobson J (2012) An in vitro model of mesenchymal stem cell targeting using magnetic particle labelling. J Tissue Eng Regen Med. doi:10.1002/term.1636

    PubMed  Google Scholar 

  178. Hughes S, Mcbain S, Dobson J, El Haj AJ (2008) Selective activation of mechanosensitive ion channels using magnetic particles. J Roy Soc Interface 5:855–863

    CAS  Google Scholar 

  179. Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47:5362–5365

    CAS  PubMed  Google Scholar 

  181. Das M, Mishra D, Dhak P, Gupta S, Maiti TK, Basak A, Pramanik P (2009) Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 5:2883–2893

    CAS  PubMed  Google Scholar 

  182. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, Jeon YS, Shim CK, Kim W, Kim J, Lee J, Lee YM, Kim JH, Kim WH, Hong SS (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006

    CAS  PubMed  Google Scholar 

  183. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in mr imaging. Eur Radiol 11:2319–2331

    CAS  PubMed  Google Scholar 

  184. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205

    CAS  PubMed  Google Scholar 

  185. Shangary S, Qin D, Mceachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific mdm2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105:3933–3938

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Zou P, Xu S, Povoski SP, Wang A, Johnson MA, Martin EW Jr, Subramaniam V, Xu R, Sun D (2009) Near-infrared fluorescence labeled anti-tag-72 monoclonal antibodies for tumor imaging in colorectal cancer xenograft mice. Mol Pharm 6:428–440

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733

    CAS  PubMed  Google Scholar 

  188. Kas R, Sevinc E, Topal U, Acar HY (2010) A universal method for the preparation of magnetic and luminescent hybrid nanoparticles. J Phys Chem C 114:7758–7766

    CAS  Google Scholar 

  189. Zou P, Yu Y, Wang YA, Zhong Y, Welton A, Galban C, Wang S, Sun D (2010) Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 7:1974–1984

    CAS  PubMed Central  PubMed  Google Scholar 

  190. Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S (2010) Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 6:64–69

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    CAS  PubMed  Google Scholar 

  193. Lee RJ, Low PS (1994) Delivery of liposomes into cultured kb cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    CAS  PubMed  Google Scholar 

  194. Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, Yang YY (2007) Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv Funct Mater 17:355–362

    CAS  Google Scholar 

  195. Fan Z, Senapati D, Singh AK, Ray PC (2013) Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. Mol Pharm 10:857–866

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    CAS  PubMed  Google Scholar 

  197. Tarn D, Ashley CE, Xue M, Carnes EC, Zink JI, Brinker CJ (2013) Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Res. EPub ahead of print, Acc Chem

    Google Scholar 

  198. Kale A, Bao Y, Zhou Z, Prevelige PE, Gupta A (2013) Directed self-assembly of cds quantum dots on bacteriophage p22 coat protein templates. Nanotechnology 24:045603. doi:10.1088/0957-4484/24/4/045603

    PubMed  Google Scholar 

  199. Hemmer E, Takeshita H, Yamano T, Fujiki T, Kohl Y, Low K, Venkatachalam N, Hyodo H, Kishimoto H, Soga K (2012) In vitro and in vivo investigations of upconversion and nir emitting gd(2)o(3):Er(3)(+), yb(3)(+) nanostructures for biomedical applications. J Mater Sci Mater Med 23:2399–2412

    CAS  PubMed  Google Scholar 

  200. Marchuk K, Guo Y, Sun W, Vela J, Fang N (2012) High-precision tracking with non-blinking quantum dots resolves nanoscale vertical displacement. J Am Chem Soc 134:6108–6111

    CAS  PubMed  Google Scholar 

  201. Riedinger A, Pernia Leal M, Deka SR, George C, Franchini IR, Falqui A, Cingolani R, Pellegrino T (2011) “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett 11:3136–3141

    CAS  PubMed  Google Scholar 

  202. Manabe N, Hoshino A, Yi-Qiang L, Goto T, Kato N, Yamamoto S (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobioscience 5:263–267

    PubMed  Google Scholar 

  203. Xiao J, Wu M, Kai G, Wang F, Cao H, Yu X (2011) Zno-zns qds interfacial heterostructure for drug and food delivery application: enhancement of the binding affinities of flavonoid aglycones to bovine serum albumin. Nanomedicine 7:850–858

    CAS  PubMed  Google Scholar 

  204. Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-fret. J Control Release 116:83–89

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of her2/neu gene via rna interference. Biomaterials 28:1565–1571

    CAS  PubMed  Google Scholar 

  206. Zaman MB, Baral TN, Jakubek ZJ, Zhang J, Wu X, Lai E, Whitfield D, Yu K (2011) Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J Nanosci Nanotechnol 11:3757–3763

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Hélder A. Santos acknowledges the Academy of Finland (projects numbers 252215 and 256394), the University of Helsinki and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement number 310892 for financial support. Dr. Luis M. Bimbo acknowledges the Finnish Cultural Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni Hirvonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Controlled Release Society

About this chapter

Cite this chapter

Santos, H.A., Bimbo, L.M., Peltonen, L., Hirvonen, J. (2015). Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. In: Devarajan, P., Jain, S. (eds) Targeted Drug Delivery : Concepts and Design. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-11355-5_18

Download citation

Publish with us

Policies and ethics