Skip to main content

Pollen Image Classification Using the Classifynder System: Algorithm Comparison and a Case Study on New Zealand Honey

  • Chapter
  • First Online:
Book cover Signal and Image Analysis for Biomedical and Life Sciences

Abstract

We describe an investigation into how Massey University’s Pollen Classifynder can accelerate the understanding of pollen and its role in nature. The Classifynder is an imaging microscopy system that can locate, image and classify slide based pollen samples. Given the laboriousness of purely manual image acquisition and identification it is vital to exploit assistive technologies like the Classifynder to enable acquisition and analysis of pollen samples. It is also vital that we understand the strengths and limitations of automated systems so that they can be used (and improved) to compliment the strengths and weaknesses of human analysts to the greatest extent possible. This article reviews some of our experiences with the Classifynder system and our exploration of alternative classifier models to enhance both accuracy and interpretability. Our experiments in the pollen analysis problem domain have been based on samples from the Australian National University’s pollen reference collection (2,890 grains, 15 species) and images bundled with the Classifynder system (400 grains, 4 species). These samples have been represented using the Classifynder image feature set. We additionally work through a real world case study where we assess the ability of the system to determine the pollen make-up of samples of New Zealand honey. In addition to the Classifynder’s native neural network classifier, we have evaluated linear discriminant, support vector machine, decision tree and random forest classifiers on these data with encouraging results. Our hope is that our findings will help enhance the performance of future releases of the Classifynder and other systems for accelerating the acquisition and analysis of pollen samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Breiman, J.H. Friedman, R.A. Olschen, C.J. Stone, Classification and Regression Trees (Chapman Hall, New York, 1999)

    Google Scholar 

  2. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. V.M. Bryant, D.C. Mildenhall, Forensic palynology in the United States of America. Palynology 14, 193–208 (1990)

    Article  Google Scholar 

  4. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. C. Chun, E.A. Hendriks, R.P.W. Duin, J.H.C. Reiber, P.S. Hiemstra, L.A. de Weger, B. Stoel, Feasibility study on automated recognition of allergenic pollen: grass, birch and mugwort. Aerobiologia. 22, 275–284 (2006)

    Article  Google Scholar 

  6. A. Cristofori, F. Cristofolini, E. Gottardini, Twenty years of aerobiological monitoring in Trentino (Italy): assessment and evaluation of airborne pollen variability. Prog. Phys. Geogr. Aerobiol. 26, 553–261 (2010)

    Google Scholar 

  7. R. Dell’Anna, P. Lazzeri, M. Frisanco, F. Monti, F.M. Campeggi, E. Gottardini, M. Bersani, Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning. Anal. Bioanal. Chem. 394, 1443–1452 (2009)

    Article  Google Scholar 

  8. M.P. De Sa-Otero, A.P. Gonzalez, M. Rodriguez-Damian, E. Cernadas, Computer-aided identification of allergenic species of Urticaceae pollen. Grana 43, 224–230 (2004)

    Article  Google Scholar 

  9. R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  10. J.R. Flenley, The problem of pollen recognition, in Problems of Picture Interpretation, ed. by M.B. Clowes, J.P. Penny (CSIRO, Canberra, 1968), pp. 141–145

    Google Scholar 

  11. I. France, A.W.G. Duller, G.A.T. Duller, H.F. Lamb, A new approach to automated pollen analysis. Quat. Sci. Rev. 19, 537–546 (2000)

    Article  Google Scholar 

  12. M.H.M. Groot, R.G. Bogota, L.J. Lourens, H. Hooghiemstra, M. Vriend, J.C. Berrio, E. Tuenter, J. Van der Plicht, B. Van Geel, M. Ziegler, S.L. Weber, A. Betancourt, L. Contreras, S. Gaviria, C. Giraldo, N. Gonzalez, J.H.F. Jansen, M. Konert, D. Ortega, O. Rangel, G. Sarmiento, J. Vandenberghe, T. Van der Hammen, M. Van der Linden, W. Westerhoff, Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Clim. Past 7, 299–316 (2011)

    Article  Google Scholar 

  13. J.A. Hertz, A. Krogh, R.G. Palmer, An Introduction to the Theory of Neural Computing (Addison-Wesley, Reading, 1991)

    Google Scholar 

  14. K. Holt, G. Allen, R. Hodgson, S. Marsland, J. Flenley, Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory. Rev. Palaeobot. Palynol. 167, 175–183 (2011)

    Article  Google Scholar 

  15. C.A. Hopping, Palynology and the oil industry. Rev. Palaeobot. Palynol. 2, 372–399 (1967)

    Article  Google Scholar 

  16. S. Hu, D.L. Dilcher, D.M. Jarzen, D.W. Taylor, Early steps of angiosperm-pollinator coevolution. Proc. Natl. Acad. Sci. 105, 240–245 (2007)

    Article  Google Scholar 

  17. G.D. Jones, V.M. Bryant, Melissopalynology in the United States: a review and critique. Palynology 16, 63–71 (1992)

    Article  Google Scholar 

  18. S. Kawashima, B. Clot, T. Fujita, Y. Takahashi, K. Nakamura, An algorithm and a device for counting airborne pollen automatically using laser optics. Atmos. Environ. 41, 7987–7993 (2007)

    Article  Google Scholar 

  19. R. Lagerstrom, Y. Arzhaeva, L. Bischof, S. Haberle, F. Hopf, D. Lovell, A comparison of classification algorithms within the classifynder pollen imaging system, in International Symposium on Computational Models for Life Sciences, Sydney, Nov 2013, vol. 1559, pp. 250–259

    Google Scholar 

  20. P. Li, W.J. Treloar, J.R. Flenley, L. Empson, Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains. J. Quat. Sci. 19, 755–762 (2004)

    Article  Google Scholar 

  21. L.J. Maher, Nomograms for computing 0.95 confidence limits of pollen data. Rev. Palaeobot. Palynol. 13, 85–93 (1971)

    Google Scholar 

  22. M. McGlone, J. Wilmshurst, Dating initial Maori environmental impact in New Zealand. Quat. Int. 59, 5–16 (1999)

    Article  Google Scholar 

  23. D.C. Mildenhall, R. Tremain, Pollen analysis of New Zealand honey. Institute of Geological and Nuclear Sciences science report, 2009, pp. 6–19

    Google Scholar 

  24. K. Mitsumoto, K. Yabusaki, K. Kobayashi, H. Aoyagi, Development of a novel real-time pollen-sorting counter using species-specific pollen autofluoresence. Aerobiologia 26, 99–111 (2010)

    Article  Google Scholar 

  25. B.V. Odgaard, Fossil pollen as a record of past biodiversity. J. Biogeogr. 26, 5–16 (1999)

    Google Scholar 

  26. S. Petersen, V.M. Bryant, The study of pollen and its role in the honey market. Am. Bee J. 151, 591–594 (2011)

    Google Scholar 

  27. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2010)

    Google Scholar 

  28. O. Ronneberger, E. Schultz, H. Burkhardt, Automated pollen recognition using 3D volume images from fluourescence microscopy. Aerobiologia 18, 107–115 (2002)

    Article  Google Scholar 

  29. H. Seppa, K.D. Bennett, Quaternary pollen analysis: recent progress in palaeoecology and palaeoclimatology. Prog. Phys. Geogr. 27, 548–579 (2003)

    Article  Google Scholar 

  30. E.C. Stillman, J.R. Flenley, The needs and prospects for automation in palynology. Quat. Sci. Rev. 15, 1–5 (1996)

    Article  Google Scholar 

  31. J. Stockmarr, Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615–621 (1971)

    Google Scholar 

  32. W. Von der Ohe, L. Persano Oddo, M.L. Piana, M. Morlot, P. Martin, Harmonized methods of melissopalynology. Apidologie 35, S18–S25 (2004)

    Article  Google Scholar 

  33. Y. Zhang, D.W. Fountain, R.M. Hodgson, J.R. Flenley, S. Gunetileke, Towards automation of palynology 3: pollen pattern recognition using Gabor transforms and digital moments. J. Quat. Sci. 19, 763–768 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Lagerstrom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lagerstrom, R. et al. (2015). Pollen Image Classification Using the Classifynder System: Algorithm Comparison and a Case Study on New Zealand Honey. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_12

Download citation

Publish with us

Policies and ethics