Skip to main content

From Universal Logic to Computer Science, and Back

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8687))

Abstract

Computer Science has been long viewed as a consumer of mathematics in general, and of logic in particular, with few and minor contributions back. In this article we are challenging this view with the case of the relationship between specification theory and the universal trend in logic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andréka, H., Németi, I.: Łoś lemma holds in every category. Studia Scientiarum Mathematicarum Hungarica 13, 361–376 (1978)

    Google Scholar 

  2. Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Csakany, B., Fried, E., Schmidt, E.T. (eds.) Universal Algebra, pp. 13–35. North-Holland (1981); Colloquia Mathematics Societas János Bolyai, 29

    Google Scholar 

  3. Andréka, H., Németi, I.: Generalization of the concept of variety and quasivariety to partial algebras through category theory. Dissertationes Mathematicae, vol. 204. Państwowe Wydawnictwo Naukowe (1983)

    Google Scholar 

  4. Barwise, J.: Axioms for abstract model theory. Annals of Mathematical Logic 7, 221–265 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barwise, J., Feferman, S.: Model-Theoretic Logics. Springer (1985)

    Google Scholar 

  6. Bergstra, J., Heering, J., Klint, P.: Module algebra. Journal of the Association for Computing Machinery 37(2), 335–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beth, E.W.: On Padoa’s method in the theory of definition. Indagationes Mathematicæ 15, 330–339 (1953)

    MathSciNet  Google Scholar 

  8. Béziau, J.-Y.: 13 questions about universal logic. Bulletin of the Section of Logic 35(2/3), 133–150 (2006)

    MATH  Google Scholar 

  9. Béziau, J.-Y. (ed.): Universal Logic: an Anthology. Studies in Universal Logic. Springer Basel (2012)

    Google Scholar 

  10. Bidoit, M., Hennicker, R., Wirsing, M.: Behavioural and abstractor specifications. Sci. Comput. Program. 25(2-3), 149–186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borzyszkowski, T.: Generalized interpolation in CASL. Information Processing Letters 76, 19–24 (2001)

    Article  MathSciNet  Google Scholar 

  12. Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286(2), 197–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borzyszkowski, T.: Generalized interpolation in first-order logic. Fundamenta Informaticæ 66(3), 199–219 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Burstall, R., Goguen, J.: The semantics of Clear, a specification language. In: Bjorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980)

    Chapter  Google Scholar 

  15. Chang, C.-C., Keisler, H.J.: Model Theory. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  16. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. Journal of Symbolic Logic 22, 269–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Diaconescu, R.: Category-based semantics for equational and constraint logic programming. DPhil thesis, University of Oxford (1994)

    Google Scholar 

  18. Diaconescu, R.: Grothendieck institutions. Applied Categorical Structures 10(4), 383–402 (2002); Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638 (February 2000)

    Google Scholar 

  19. Diaconescu, R.: Institution-independent ultraproducts. Fundamenta Informaticæ 55(3-4), 321–348 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Diaconescu, R.: An institution-independent proof of Craig Interpolation Theorem. Studia Logica 77(1), 59–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diaconescu, R.: Interpolation in Grothendieck institutions. Theoretical Computer Science 311, 439–461 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)

    Google Scholar 

  23. Diaconescu, R.: Quasi-boolean encodings and conditionals in algebraic specification. Journal of Logic and Algebraic Programming 79(2), 174–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diaconescu, R.: An axiomatic approach to structuring specifications. Theoretical Computer Science 433, 20–42 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Diaconescu, R.: Borrowing interpolation. Journal of Logic and Computation 22(3), 561–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Diaconescu, R.: Three decades of institution theory. In: Béziau, J.-Y. (ed.) Universal Logic: an Anthology, pp. 309–322. Springer Basel (2012)

    Google Scholar 

  27. Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. Journal of Logic and Computation, doi:10.1093/logcom/ext016

    Google Scholar 

  28. Diaconescu, R., Futatsugi, K.: CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification. AMAST Series in Computing, vol. 6. World Scientific (1998)

    Google Scholar 

  29. Diaconescu, R., Futatsugi, K.: Behavioural coherence in object-oriented algebraic specification. Universal Computer Science 6(1), 74–96 (1998); First version appeared as JAIST Technical Report IS-RR-98-0017F (June 1998)

    Google Scholar 

  30. Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Logical Environments, Cambridge, pp. 83–130 (1993); Proceedings of a Workshop held in Edinburgh, Scotland (May 1991)

    Google Scholar 

  31. Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first order logic. Mathematical Structures in Computer Science (to appear)

    Google Scholar 

  32. Diaconescu, R., Petria, M.: Saturated models in institutions. Archive for Mathematical Logic 49(6), 693–723 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74, 65–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ehresmann, C.: Catégories et strcutures, Dunod Paris (1965)

    Google Scholar 

  35. Ehresmann, C.: Esquisses et types des structures algébriques. Buletinul Institutului Politehnic Iaşi 14(18), 1–14 (1968)

    MathSciNet  Google Scholar 

  36. Gabbay, D.M., Maksimova, L.: Interpolation and Definability: modal and intuitionistic logics. Oxford University Press (2005)

    Google Scholar 

  37. Goguen, J.: A categorical manifesto. Mathematical Structures in Computer Science 1(1), 49–67 (1991); Also, Programming Research Group Technical Monograph PRG–72, Oxford University (March 1989)

    Google Scholar 

  38. Goguen, J.: Types as theories. In: Reed, G.M., Roscoe, A.W., Wachter, R.F. (eds.) Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991); Proceedings of a Conference held at Oxford (June 1989)

    Google Scholar 

  39. Goguen, J., Burstall, R.: Introducing institutions. In: Clarke, E., Kozen, D. (eds.) Logic of Programs 1983. LNCS, vol. 164, pp. 221–256. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  40. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the Association for Computing Machinery 39(1), 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Goguen, J., Diaconescu, R.: Towards an algebraic semantics for the object paradigm. In: Ehrig, H., Orejas, F. (eds.) Abstract Data Types 1992 and COMPASS 1992. LNCS, vol. 785, pp. 1–34. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  42. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1), 55–101 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Găină, D., Popescu, A.: An institution-independent proof of Robinson consistency theorem. Studia Logica 85(1), 41–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Guitart, R., Lair, C.: Calcul syntaxique des modèles et calcul des formules internes. Diagramme 4 (1980)

    Google Scholar 

  45. Hennicker, R., Bidoit, M.: Observational logic. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 263–277. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  46. Makkai, M.: Ultraproducts and categorical logic. In: DiPrisco, C.A. (ed.) Methods in Mathematical Logic. Lecture Notes in Mathematics, vol. 1130, pp. 222–309. Springer (1985)

    Google Scholar 

  47. Makkai, M., Reyes, G.: First order categorical logic: Model-theoretical methods in the theory of topoi and related categories. Lecture Notes in Mathematics, vol. 611. Springer (1977)

    Google Scholar 

  48. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  49. Matthiessen, G.: Regular and strongly finitary structures over strongly algebroidal categories. Canadian Journal of Mathematics 30, 250–261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  50. Donald Monk, J.: Mathematical Logic. Springer (1976)

    Google Scholar 

  51. Petria, M., Diaconescu, R.: Abstract Beth definability in institutions. Journal of Symbolic Logic 71(3), 1002–1028 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Reichel, H.: Behavioural equivalence – a unifying concept for initial and final specifications. In: Proceedings, Third Hungarian Computer Science Conference, Budapest. Akademiai Kiado (1981)

    Google Scholar 

  53. Reichel, H.: Initial Computability, Algebraic Specifications, and Partial Algebras, Clarendon (1987)

    Google Scholar 

  54. Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)

    Google Scholar 

  55. Rodenburg, P.-H.: Interpolation in conditional equational logic. Preprint from Programming Research Group at the University of Amsterdam (1989)

    Google Scholar 

  56. Rodenburg, P.-H.: A simple algebraic proof of the equational interpolation theorem. Algebra Universalis 28, 48–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Software Development. Springer (2012)

    Google Scholar 

  58. Shoenfield, J.: Mathematical Logic. Addison-Wesley (1967)

    Google Scholar 

  59. Tarlecki, A.: Bits and pieces of the theory of institutions. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D. (eds.) Category Theory and Computer Programming. LNCS, vol. 240, pp. 334–360. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  60. Tarski, A.: On some fundamental concepts of metamathematics. In: Logic, Semantics, Metamathematics, pp. 30–37. Oxford University Press (1956)

    Google Scholar 

  61. Veloso, P.: On pushout consistency, modularity and interpolation for logical specifications. Information Processing Letters 60(2), 59–66 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wells, C.F.: Sketches: Outline with references (unpublished draft)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Diaconescu, R. (2014). From Universal Logic to Computer Science, and Back. In: Ciobanu, G., Méry, D. (eds) Theoretical Aspects of Computing – ICTAC 2014. ICTAC 2014. Lecture Notes in Computer Science, vol 8687. Springer, Cham. https://doi.org/10.1007/978-3-319-10882-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10882-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10881-0

  • Online ISBN: 978-3-319-10882-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics