Skip to main content

Superlubricity in Layered Nanostructures

  • Chapter
  • First Online:

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Interaction between two surfaces in relative motion can give rise to energy dissipation and hence sliding friction. A significant portion of the energy is dissipated through the creation of non-equilibrium phonons. Recent advances in material synthesis have made the production of specific single layer honeycomb structures and their multilayer phases, such as graphene, graphane, fluorographene, MoS\(_2\) and WO\(_2\). When coated to the moving surfaces, the attractive interaction between these layers is normally very weak and becomes repulsive at large separation under loading force. Providing a rigorous quantum mechanical treatment for the 3D sliding motion under a constant loading force within Prandtl-Tomlinson model, we derive the critical stiffness required to avoid stick-slip motion. Also these nanostructures acquire low critical stiffness even under high loading force due to their charged surfaces repelling each other. The intrinsic stiffness of these materials exceeds critical stiffness and thereby the materials avoid stick-slip regime and attain nearly dissipationless continuous sliding. Remarkably, layered WO\(_2\) a much better performance as compared to others and promises a potential superlubricant nanocoating. The absence of mechanical instabilities leading to conservative lateral forces is also confirmed directly by the simulations of sliding layers. Graphene coated metal surfaces also attain superlubricity and hence nearly frictionless sliding through a charge exchange mechanism with metal surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Prandtl, Z. Angew, Math. Mech. 8, 85 (1928)

    MATH  Google Scholar 

  2. G.A. Tomlinson, Philos. Mag. 7, 905 (1929)

    Google Scholar 

  3. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)

    Book  Google Scholar 

  4. M. Urbakh, E. Meyer, Nature Mat. 9, 8 (2010)

    Article  ADS  Google Scholar 

  5. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59, 1942 (1987)

    Article  ADS  Google Scholar 

  6. D. Tomanék, W. Zhong, H. Thomas, Europhys. Lett. 15, 887 (1991)

    Article  ADS  Google Scholar 

  7. A. Buldum, S. Ciraci, Phys. Rev. B 55, 2606 (1997)

    Article  ADS  Google Scholar 

  8. M.H. Mueser, M. Urbakh, M.O. Robbins, Advances. Chem. Phys. 126, 187 (2003)

    Google Scholar 

  9. V.L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986)

    Google Scholar 

  10. A. Buldum, D.M. Leitner, S. Ciraci, Phys. Rev. B 59, 16042 (1999)

    Article  ADS  Google Scholar 

  11. H. Sevincli, S. Mukhopadhyay, R.T. Senger, S. Ciraci, Phys. Rev. B 76, 205430 (2007)

    Article  ADS  Google Scholar 

  12. E. Gnecco, R. Bennewitz, T. Gyalog, Ch. Loppacher, M. Bammerlin, E. Meyer, H.-J. Gntherodt, Phys. Rev. Lett. 84, 1172 (2000)

    Article  ADS  Google Scholar 

  13. A. Socoliuc, R. Bennewitz, E. Gnecco, E. Meyer, Phys. Rev. Lett. 92, 134301 (2004)

    Article  ADS  Google Scholar 

  14. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  15. H. Şahin, C. Ataca, S. Ciraci, Phys. Rev. B 81, 205417 (2010)

    Article  ADS  Google Scholar 

  16. R.R. Nair, W. Ren, R. Jalil, I. Riaz, V.G. Kravets, L. Britnell, P. Blake, F. Schedin, A.S. Mayorov, S. Yuan, M.I. Katsnelson, H.-M. Cheng, W. Strupinski, L.G. Bulusheva, A.V. Okotrub, I.V. Grigorieva, A.N. Grigorenko, K.S. Novoselov, A.K. Geim, Small 6, 2877 (2010)

    Article  Google Scholar 

  17. H. Şahin, M. Topsakal, S. Ciraci, Phys. Rev. B 83, 115432 (2011)

    Article  ADS  Google Scholar 

  18. C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci, J. Phys. Chem. C 115, 16354 (2011)

    Article  Google Scholar 

  19. C. Ataca, H. Sahin, E. Aktürk, S. Ciraci, J. Phys. Chem. C 116, 8983 (2011)

    Article  Google Scholar 

  20. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Topsakal, S. Cahangirov, S. Ciraci, App. Phys. Lett. 96, 091912 (2010)

    Article  ADS  Google Scholar 

  23. S. Miyake, R. Kaneko, Y. Kikuya, I. Sugimoto, J. Tribol. 113, 384 (1991)

    Article  Google Scholar 

  24. P. Thomas, K. Delbe, D. Himmel, J.L. Mansot, F. Cadore, K. Guerin, M. Dubois, C. Delabarre, A. Hamwi, J. Phys. Chem. Solids 67, 1095 (2006)

    Article  ADS  Google Scholar 

  25. J.M. Martin, C. Donnet, Th. Le Mogne, Th. Epicier, Phys. Rev. B 48, 10583 (1993)

    Google Scholar 

  26. T. Liang, W.G. Sawyer, S.S. Perry, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 77, 104105 (2008)

    Article  ADS  Google Scholar 

  27. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C.W. Magnuson, A. Velamakanni, R.D. Piner, J. Kang, J. Park, R.S. Ruoff, ACS Nano 5, 1321 (2011)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  29. S. Grimme, J. Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  30. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  31. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  32. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  33. S. Cahangirov, C. Ataca, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 108, 126103 (2012)

    Article  ADS  Google Scholar 

  34. S. Cahangirov, S. Ciraci, V. Ongun, Özçelik. Phys. Rev. B 87, 205428 (2013)

    Article  ADS  Google Scholar 

  35. L.C. Lew, Yan Voon, E. Sandberg, R. S. Aga, A. A. Farajian. Appl. Phys. Lett. 97, 163114 (2010)

    Article  ADS  Google Scholar 

  36. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 98, 223107 (2011)

    Article  ADS  Google Scholar 

  37. S. Cahangirov, E. Aktürk, M. Topsakal, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  38. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  39. J.S. Choi, J.S. Kim, I.S. Byun, D.H. Lee, M.J. Lee, B.H. Park, C. Lee, D. Yoon, H. Cheong, K.H. Lee, Y.W. Son, J.Y. Park, M. Salmeron, Science 333, 607 (2011)

    Article  ADS  Google Scholar 

  40. A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008)

    Article  ADS  Google Scholar 

  41. A.S. de Wijn, C. Fusco, A. Fasolino, Phys. Rev. E 81, 046105 (2010)

    Article  ADS  Google Scholar 

  42. I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, O.V. Ershova, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 82, 155460 (2010)

    Article  ADS  Google Scholar 

  43. A.M. Popov, I.V. Lebedeva, A.A. Knizhnik, Y.E. Lozovik, B.V. Potapkin, Phys. Rev. B 84, 045404 (2011)

    Article  ADS  Google Scholar 

  44. H. Lee, N. Lee, Y. Seo, J. Eom, S.W. Lee, Nanotechnology 20, 325701 (2009)

    Article  Google Scholar 

  45. T. Filleter, J.L. McChesney, A. Bostwick, E. Rotenberg, K.V. Emtsev, Th. Seyller, K. Horn, R. Bennewitz, Phys. Rev. Lett. 102, 086102 (2009)

    Google Scholar 

  46. C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, J. Hone, Science 328, 76 (2010)

    Article  ADS  Google Scholar 

  47. A. Erdemir, Surf. Coat. Technol. 146, 292 (2001)

    Article  Google Scholar 

  48. D. Berman, A. Erdemir, A.V. Sumant, Carbon 54, 454 (2013)

    Article  Google Scholar 

  49. D. Berman, A. Erdemir, A.V. Sumant, Carbon 59, 167 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This Chapter is partially based on the doctoral thesis work of S. Cahangirov at Bilkent University and the related research results were initially reported in Phys. Rev. Lett. 108, 126103 (2012) and Phys. Rev. B. 87, 205428 (2013). The authors thank C. Ataca, M. Topsakal, H. Şahin and Ongun Özçelik for their contributions to the theoretical research on sliding friction in our group at UNAM, National Nanotechnolgy Research Center at Bilkent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Ciraci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cahangirov, S., Ciraci, S. (2015). Superlubricity in Layered Nanostructures. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_21

Download citation

Publish with us

Policies and ethics