Skip to main content

Linear Object Registration of Interventional Tools

  • Conference paper
  • 950 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8678))

Abstract

PURPOSE: Point-set registration for interventional tools requires well-defined points to be present on these tools. In this work, an algorithm is proposed which uses planes, lines, and points for registration when point-set registration is not feasible. METHODS: The proposed algorithm matches points, lines, and planes in each coordinate system, uses invariant features for initial registration, and optimizes the registration iteratively. For validation, simulated data with known ground-truth and real surgical tool registration data using point-set registration as ground-truth were created to evaluate the algorithm’s accuracy. RESULTS: The proposed algorithm is equally as accurate as point-set registration, and the difference between the registrations is less than the noise in the tracking system. CONCLUSION: The proposed algorithm is a viable alternative when point-set registration cannot be performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besl, P.J., McKay, N.D.: A Method for Registration of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

    Article  Google Scholar 

  2. Carbajal, G., et al.: Improving N-wire phantom-based freehand ultrasound calibration. International Journal of Computer Assisted Radiology and Surgery 8, 1063–1072 (2013)

    Article  Google Scholar 

  3. Chen, T.K., et al.: A Real-Time Freehand Ultrasound Calibration System with Automatic Accuracy Feedback and Control. Ultrasound in Medicine & Biology 35(1), 79–93 (2009)

    Article  Google Scholar 

  4. Fitzgibbon, A.W.: Robust Registration of 2D and 3D Point Sets. Image and Vision Computing 21, 1145–1153 (2003)

    Article  Google Scholar 

  5. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting Error in Rigid-Body Registration. IEEE Transactions on Medical Imaging 17, 694–702 (1998)

    Article  Google Scholar 

  6. Foroughi, P., Taylor, R., Fichtinger, G.: Revisited Initialization for 3D Bone Registration. In: Proceedings of SPIE (2008)

    Google Scholar 

  7. Jain, A.K., et al.: FTRAC - A robust fluoroscopic tracking fiducial. Medical Physics 32(10), 3185–3198 (2005)

    Article  Google Scholar 

  8. Lee, S., Fichtinger, G., Chirikjian, G.S.: Numerical algorithms for spatial registration of line fiducial from cross-sectional images. Medical Physics 29(8), 1881–1891 (2002)

    Article  Google Scholar 

  9. Li, H., Hartley, R.: The 3D-3D Registration Problem Revisited. In: IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  10. Meyer, C.R., et al.: Simultaneous Usage of Homologous Points, Lines, and Planes for Optimal 3D, Linear Registration of Multimodality Imaging Data. IEEE Transactions on Medical Imaging 14, 1–11 (1995)

    Article  Google Scholar 

  11. Olsson, C., Kahl, F., Oskarsson, M.: Branch-and-Bound Methods for Euclidean Registration Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5), 783–794 (2009)

    Article  Google Scholar 

  12. Shamir, R., Freiman, M., Joskowicz, L., Shoham, M., Zehavi, E., Shoshan, Y.: Robot-Assisted Image-Guided Targeting for Minimally Invasive Neurosurgery: Planning, Registration, and In-vitro Experiment. In: Duncan, J.S., Gerig, G., et al. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 131–138. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Thirion, J.P.: Extremal Points: Definition and Application to 3D Image Registration. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  14. Ungi, T., et al.: Perk Tutor: An open-source training platform for ultrasound-guided needle insertions. IEEE Transactions on Biomedical Engineering 59(12), 3475–3481 (2012)

    Article  Google Scholar 

  15. Walsh, R., et al.: Design of a tracked ultrasound calibration made of LEGO bricks. In: SPIE Medical Imaging (2014)

    Google Scholar 

  16. Xiao, G., Ong, S.H., Foong, K.W.C.: Efficient Partial-Surface Registration for 3D Objects. Computer Vision and Image Understanding 98, 271–293 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Holden, M.S., Fichtinger, G. (2014). Linear Object Registration of Interventional Tools. In: Linte, C.A., Yaniv, Z., Fallavollita, P., Abolmaesumi, P., Holmes, D.R. (eds) Augmented Environments for Computer-Assisted Interventions. AE-CAI 2014. Lecture Notes in Computer Science, vol 8678. Springer, Cham. https://doi.org/10.1007/978-3-319-10437-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10437-9_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10436-2

  • Online ISBN: 978-3-319-10437-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics