Skip to main content

Density Functional Theory Applied on Confined Many-Electron Atoms

  • Chapter
  • First Online:
Book cover Electronic Structure of Quantum Confined Atoms and Molecules

Abstract

ln this report, Thomas-Fermi and Kohn-Sham models are used to study the electronic structure of confined atoms. The Slater and Krutter method is reviewed and it is applied on a modification of the Thomas-Fermi model, where the cusp condition is satisfied. By analyzing the equation involved in this discussion, it is found that in the Thomas-Fermi model a neutral atom cannot be confined in a sphere, of arbitrary radius, where the electron density is cancelled. By the side of the Kohn-Sham method, several exchange-correlation functionals were applied on atoms confined by rigid walls. It was found that the highest occupied molecular orbital, obtained by the considered exchange-correlation functionals, show large discrepancies with regard to those values obtained by the Hartree-Fock method, even for confinements where the asymptotic region is not relevant. Additionally, we found important differences, for the correlation energy, between the correlation functionals used and a wave function obtained by a Hylleraas wave functions expansion for two-electron system. Thus, we pointed out some relevant issues that must be addressed in the near future by the Kohn-Sham method applied to confined atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Engel E, Dreizler RM (2011) Density functional theory: an advanced course (theoretical and mathematical physics). Springer, Berlin

    Book  Google Scholar 

  3. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Degroot SR, Tenseldam CA (1946) Physica 12:669

    Article  CAS  Google Scholar 

  5. Jaskolski W (1996) Phys Rep—Rev Sect Phys Lett 271:1

    CAS  Google Scholar 

  6. Michels A, De Boer J, Bijl A (1937) Physica 4:14

    Google Scholar 

  7. Sommerfeld A, Welker H (1938) Annalen Der Physik 32:56

    Article  CAS  Google Scholar 

  8. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  9. Fermi E (1928) Zeitschrift Fur Physik 48:73

    Article  CAS  Google Scholar 

  10. Thomas LH (1927) Proceedings of the Cambridge Philosophical Society 23:542

    Article  CAS  Google Scholar 

  11. Kohn W, Sham LJ (1965) Phys Rev 140:1133

    Article  Google Scholar 

  12. Slater JC, Krutter HM (1935) Phys Rev 47:559

    Article  CAS  Google Scholar 

  13. Abrahams AM, Shapiro SL (1990) Phys Rev A 42:2530

    Article  CAS  Google Scholar 

  14. Parr RG, Ghosh SK (1986) Proc Nat Acad Sci U S A 83:3577

    Article  CAS  Google Scholar 

  15. Kato T (1957) Commun Pure Appl Math 10:151

    Article  Google Scholar 

  16. Feynman RP, Metropolis N, Teller E (1949) Phys Rev 75:1561

    Article  CAS  Google Scholar 

  17. Díaz-García C, Cruz SA (2008) Int J Quantum Chem 108:1572

    Article  Google Scholar 

  18. Cruz SA (2009) Advances in quantum chemistry, vol 57. Elsevier Academic Press Inc, San Diego, p 255

    Google Scholar 

  19. Boeyens JCA (1994) J Chem Soc-Faraday Trans 90:3377

    Article  CAS  Google Scholar 

  20. Sarkar U, Giri S, Chattaraj PK (2009) J Phys Chem A 113:10759

    Article  CAS  Google Scholar 

  21. Garza J, Vargas R, Vela A (1998) Phys Rev E 58:3949

    Article  CAS  Google Scholar 

  22. Ekstrom U, Visscher L, Bast R, Thorvaldsen AJ, Ruud K (2010) J Chem Theory Comput 1971:6

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  25. Sen KD, Garza J, Vargas R, Vela A (2014) Proc Indian Natn Sci Acad 70A, 675

    Google Scholar 

  26. Guerra D, Vargas R, Fuentealba P, Garza J (2009) Advances in quantum chemistry, vol 58. Elsevier Academic Press Inc, San Diego, p 1

    Google Scholar 

  27. Koopmans T (1934) Physica 1:104

    Article  Google Scholar 

  28. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Phys Rev Lett 49:1691

    Article  CAS  Google Scholar 

  29. Díaz-García C, Cruz SA (2006) Phys Lett A 353:332

    Article  Google Scholar 

  30. Ludeña EV (1978) J Chem Phys 69:1770

    Article  Google Scholar 

  31. Garza J, Hernández-Pérez JM, Ramírez JZ, Vargas R (2012) J Phys B-At Mol Opt Phys 45:015002

    Google Scholar 

  32. Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:301

    Article  Google Scholar 

  33. Bunge CF, Barrientos JA, Bunge AV, Cogordan JA (1992) Phys Rev A 46:3691

    Article  CAS  Google Scholar 

  34. Koga T, Tatewaki H, Thakkar AJ (1994) Theoretica Chimica Acta 88:273

    Article  CAS  Google Scholar 

  35. Sansonetti JE, Martin WC (2005) J Phys Chem Ref Data 34:1559

    Article  CAS  Google Scholar 

  36. Garza J, Vargas R (2009) Advances in quantum chemistry, vol 57. Elsevier Academic Press Inc, San Diego, p 241

    Google Scholar 

  37. Handy NC, Cohen AJ (2001) Mol Phys 99:403

    Article  CAS  Google Scholar 

  38. Sen KD, Garza J, Vargas R, Vela A (2000) Chem Phys Lett 325:29

    Article  CAS  Google Scholar 

  39. Garza J, Nichols JA, Dixon DA (2000) J Chem Phys 112:1150

    Article  CAS  Google Scholar 

  40. Garza J, Vargas R, Nichols JA, Dixon DA (2001) J Chem Phys 114:639

    Article  CAS  Google Scholar 

  41. Vonniessen W, Schirmer J, Cederbaum LS (1984) Comput Phys Rep 1:57

    Article  CAS  Google Scholar 

  42. Ortiz JV (1999) Adv Quantum Chem 35:33

    Article  CAS  Google Scholar 

  43. Linderberg J, Öhrn Y (2004) Propagators in quantum chemistry, 2nd edn. Wiley-Interscience, New Jersey

    Book  Google Scholar 

  44. Garza J, Vargas R, Vela A, Sen KD (2000) J Mol Struc Theochem 501:183

    Article  Google Scholar 

  45. Navarrete-López AM, Garza J, Vargas R (2008) J Chem Phys, 128:104110

    Google Scholar 

  46. Ludeña EV, Gregori M (1979) J Chem Phys 71:2235

    Article  Google Scholar 

  47. Aquino N, Garza J, Flores-Riveros A, Rivas-Silva JF, Sen KD (2006) J Chem Phys 124:8

    Article  Google Scholar 

  48. Flores-Riveros A, Rodríguez-Contreras A (2008) Phys Lett A 372:6175

    Article  CAS  Google Scholar 

  49. Gimarc BM (1967) J Chem Phys 47:5110

    Article  CAS  Google Scholar 

  50. Rivelino R, Vianna JDM (2001) J Phys B-At Mol Opt. Physics 34:L645

    CAS  Google Scholar 

  51. Wilson CL, Montgomery HE, Sen KD, Thompson DC (2010) Phys Lett A 374:4415

    Article  CAS  Google Scholar 

  52. Le Sech C, Banerjee A (2011) J Phys B-At Mol Opt. Physics 44:9

    Google Scholar 

  53. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  54. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  55. Sarsa A, Le Sech C (2011) J Chem Theory Comput 7:2786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by CONACYT, México, through the projects 154784, 155698 and 155070. The authors thank the facilities provided by the Laboratorio de Supercómputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana-Iztapalapa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Garza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garza, J., Vargas, R. (2014). Density Functional Theory Applied on Confined Many-Electron Atoms. In: Sen, K. (eds) Electronic Structure of Quantum Confined Atoms and Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-09982-8_8

Download citation

Publish with us

Policies and ethics