Skip to main content

Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1,2): Discrete Spectrum, Solutions and Applications

  • Conference paper
Advances in Modelling and Control of Non-integer-Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 320))

Abstract

We study a regular fractional Sturm-Liouville problem formulated using left and right Riemann-Liouville derivatives of order in the range (1,2). We prove a theorem describing the eigenvalues and eigenfunctions of such a problem considered on the space of functions continuously differentiable in a finite interval and obeying vanishing Dirichlet and fractional Neumann boundary conditions. It appears that the spectrum of eigenvalues is discrete and that the eigenfunctions form a basis in the space of square-integrable functions. We also show applications of the derived eigenfunctions in the theory of partial fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Mdallal, Q.M.: An efficient method for solving fractional Sturm–Liouville problems. Chaos Solitons and Fractals 40, 183–189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Al–Mdallal, Q.M.: On the numerical solution of fractional Sturm–Liouville problem. Int. J. of Comput. Math. 87, 2837–2845 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Erturk, V.S.: Computing eigenelements of Sturm-Liouville Problems of fractional order via fractional differential transform method. Mathematical and Computational Applications 16, 712–720 (2011)

    MathSciNet  Google Scholar 

  4. Forman, J.L., Soerensen, M.: The Pearson diffusions: a class of statistically tractable diffusion processes. Scandinavian J. Stat. 35, 438–465 (2008)

    Article  MATH  Google Scholar 

  5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  6. Klimek, M.: On solutions of linear fractional differential equations of a variational type. The Publishing Office of Czestochowa University of Technology, Czestochowa (2009)

    Google Scholar 

  7. Klimek, M., Agrawal, O.P.: On a regular fractional Sturm–Liouville problem with derivatives of order in (0,1). In: Proceedings of the 13th International Carpathian Control Conference, Vysoke Tatry (Podbanske), Slovakia, May 28-31 (2012), doi:dx.doi.org/10.1109/CarpathianCC.2012.6228655

    Google Scholar 

  8. Klimek, M., Agrawal, O.P.: Regular fractional Sturm–Liouville problem with generalized derivatives of order in (0,1). In: Proceedings of the IFAC Joint Conference: 5th SSSC, 11th WTDA, 5th WFDA, Grenoble, France, February 4-6 (2013), doi:dx.doi.org/10.3182/20130204-3-FR-4032.00170

    Google Scholar 

  9. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66, 795–812 (2013)

    Article  MathSciNet  Google Scholar 

  10. Klimek, M., Agrawal, O.P.: Space- and time-fractional Legendre-Pearson diffusion equation. In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (DETC 2013), August 4-7. Oregon USA Paper DETC2013-12604, Portland (2013)

    Google Scholar 

  11. Klimek, M., Odzijewicz, T., Malinowska, A.: Variational methods for the fractional Sturm-Liouville problems. J. Math. Anal. Appl. 416, 402–426 (2014)

    Article  MathSciNet  Google Scholar 

  12. Klimek, M., Blasik, M.: Regular fractional Sturm-Liouville problem with discrete spectrum: solutions and applications. In: Proceedings of the 2014 International Conference on Fractional Differentiaton and Its Applications, Catania, Italy, June 23-25 (2014)

    Google Scholar 

  13. Lin, Y., He, T., Shi, H.: Existence of positive solutions for Sturm–Liouville BVPs of singular fractional differential equations. U. P. B. Sci. Bull. Series A, 74 (2012)

    Google Scholar 

  14. Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.A.: Fractional Pearson diffusion. J. Math Anal. Appl. 403, 532–546 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  16. Neamaty, A., Darzi, R., Dabbaghian, A., Golipoor, J.: Introducing an Iterative Method for Solving a Special FDE. International Mathematical Forum 4, 1449–1456 (2009)

    MATH  MathSciNet  Google Scholar 

  17. d’Ovidio, M.: From Sturm–Liouville problems to fractional and anomalous diffusions. Stochastic Processes and their Applications 122, 3513–3544 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Qi, J., Chen, S.: Eigenvalue problems of the model from nonlocal continuum mechanics. J. Math. Phys. 52, 073516 (2011)

    Google Scholar 

  20. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996)

    Article  MathSciNet  Google Scholar 

  21. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  22. Rivero, M., Trujillo, J.J., Velasco, M.P.: A fractional approach to the Sturm-Liouville problem. Cent. Eur. J. Phys. (2013), doi: 10.2478/s11534-013-0216-2

    Google Scholar 

  23. Sagan, H.: Boundary and Eigenvalue Problems in Mathematical Physics. J. Wiley & Sons, Inc., New York (1961)

    MATH  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  25. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zettl, A.: Sturm-Liouville Theory. Mathematical Surveys and Monographs, vol. 121. American Mathematical Society (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Klimek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Klimek, M., Blasik, M. (2015). Regular Sturm-Liouville Problem with Riemann-Liouville Derivatives of Order in (1,2): Discrete Spectrum, Solutions and Applications. In: Latawiec, K., Łukaniszyn, M., Stanisławski, R. (eds) Advances in Modelling and Control of Non-integer-Order Systems. Lecture Notes in Electrical Engineering, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-09900-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09900-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09899-9

  • Online ISBN: 978-3-319-09900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics