Skip to main content

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

We introduce a variant of the deterministic rendezvous problem for a pair of heterogeneous agents operating in an undirected graph, which differ in the time they require to traverse particular edges of the graph. Each agent knows the complete topology of the graph and the initial positions of both agents. The agent also knows its own traversal times for all of the edges of the graph, but is unaware of the corresponding traversal times for the other agent. The goal of the agents is to meet on an edge or a node of the graph. In this scenario, we study the time required by the agents to meet, compared to the meeting time \(T_{\textup{OPT}}\) in the offline scenario in which the agents have complete knowledge about each others speed characteristics. When no additional assumptions are made, we show that rendezvous in our model can be achieved after time \(O(n T_{\textup{OPT}})\) in a n-node graph, and that such time is essentially in some cases the best possible. However, we prove that the rendezvous time can be reduced to \(\Theta (T_{\textup{OPT}})\) when the agents are allowed to exchange Θ(n) bits of information at the start of the rendezvous process. We then show that under some natural assumption about the traversal times of edges, the hardness of the heterogeneous rendezvous problem can be substantially decreased, both in terms of time required for rendezvous without communication, and the communication complexity of achieving rendezvous in time \(\Theta (T_{\textup{OPT}})\).

Research partially supported by the Polish National Science Center grant DEC-2011/02/A/ST6/00201 and by the ANR project DISPLEXITY (ANR-11-BS02-014). This study has been carried out in the frame of the “Investments for the future” Programme IdEx Bordeaux CPU (ANR-10-IDEX-03-02). Dariusz Dereniowski was partially supported by a scholarship for outstanding young researchers funded by the Polish Ministry of Science and Higher Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpern, S., Gal, S.: The theory of search games and rendezvous. International Series in Operations Research and Managment Science. Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  2. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings of 14th Annual ACM Symposium on Computational Geometry (SoCG), pp. 365–373 (1998)

    Google Scholar 

  3. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Research 49(1), 107–118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM Journal on Control and Optimization 36(6), 1880–1889 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Research Logistics 48(8), 722–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2013)

    Google Scholar 

  8. Collins, A., Czyzowicz, J., Gąsieniec, L., Kosowski, A., Martin, R.: Synchronous rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 447–459. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The beachcombers’ problem: Walking and searching with mobile robots. CoRR, abs/1304.7693 (2013)

    Google Scholar 

  11. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distributed Computing 25(2), 165–178 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding robots. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. CoRR, abs/1301.7119 (2013)

    Google Scholar 

  16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337(1-3), 147–168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Gal, S.: Rendezvous search on the line. Operations Research 47(6), 974–976 (1999)

    Article  MATH  Google Scholar 

  19. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 421–434. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing mutual exclusion. In: Dwork, C. (ed.) PODC, pp. 119–131. ACM (1990)

    Google Scholar 

  21. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

    Article  MATH  Google Scholar 

  22. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399(1-2), 141–156 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM Journal on Control and Optimization 34(5), 1650–1665 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355(3), 315–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)

    Google Scholar 

  27. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proceedings of 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 599–608 (2007)

    Google Scholar 

  28. Thomas, L.: Finding your kids when they are lost. Journal of the Operational Research Society 43(6), 637–639 (1992)

    Article  MATH  Google Scholar 

  29. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dereniowski, D., Klasing, R., Kosowski, A., Kuszner, Ł. (2014). Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics