Skip to main content

Design of a Control Architecture for Habit Learning in Robots

  • Conference paper
Book cover Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

Researches in psychology and neuroscience have identified multiple decision systems in mammals, enabling control of behavior to shift with training and familiarity of the environment from a goal-directed system to a habitual system. The former relies on the explicit estimation of future consequences of actions through planning towards a particular goal, which makes decision time longer but produces rapid adaptation to changes in the environment. The latter learns to associate values to particular stimulus-response associations, leading to quick reactive decision- making but slow relearning in response to environmental changes. Computational neuroscience models have formalized this as a coordination of model-based and model-free reinforcement learning. From this inspiration we hypothesize that it could enable robots to learn habits, detect when these habits are appropriate and thus avoid long and costly computations of the planning system. We illustrate this in a simple repetitive cube-pushing task on a conveyor belt, where a speed-accuracy trade-off is required. We show that the two systems have complementary advantages in these tasks, which can be combined for performance improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balleine, B.W., Dickinson, A.: Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998)

    Article  Google Scholar 

  2. Balleine, B.W., O’Doherty, J.P.: Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010)

    Article  Google Scholar 

  3. Caluwaerts, K., Favre-Félix, A., Staffa, M., N’Guyen, S., Grand, C., Girard, B., Khamassi, M.: Neuro-inspired navigation strategies shifting for robots: Integration of a multiple landmark taxon strategy. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 62–73. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Caluwaerts, K., Staffa, M., N’Guyen, S., Grand, C., Dollé, L., Favre-Félix, A., Girard, B., Khamassi, M.: A biologically inspired meta-control navigation system for the psikharpax rat robot. Bioinspiration and Biomimetics (2012)

    Google Scholar 

  5. Daw, N.D., Niv, Y., Dayan, P.: Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience 8(12), 1704–1711 (2005)

    Article  Google Scholar 

  6. Dezfouli, A., Balleine, B.W.: Habits, action sequences and reinforcement learning. European Journal of Neuroscience 35(7), 1036–1051 (2012)

    Article  Google Scholar 

  7. Dickinson, A.: Contemporary animal learning theory. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  8. Dickinson, A.: Actions and habits: The development of behavioural autonomy. Phil Trans Roy Soc B: Biol Sci 308, 67–78 (1985)

    Article  Google Scholar 

  9. Dollé, L., Sheynikhovich, D., Girard, B., Chavarriaga, R., Guillot, A.: Path planning versus cue responding: a bioinspired model of switching between navigation strategies. Biological Cybernetics 103(4), 299–317 (2010)

    Article  MATH  Google Scholar 

  10. Gat, E.: On three-layer architectures. In: Artificial Intelligence and Mobile Robots. MIT Press (1998)

    Google Scholar 

  11. Huys, Q.J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., Roiser, J.P.: Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Computational Biology 8(3) (2012)

    Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  13. Keramati, M., Dezfouli, A., Piray, P.: Speed/accuracy trade-off between the habitual and goal-directed processes. PLoS Computational Biology 7(5), 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  14. Khamassi, M., Humphries, M.D.: Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Frontiers in Behavioral Neuroscience 6, 79 (2012)

    Article  Google Scholar 

  15. Kober, J., Bagnell, D., Peters, J.: Reinforcement learning in robotics: A survey. International Journal of Robotics Research (11), 1238–1274 (2013)

    Google Scholar 

  16. Lesaint, F., Sigaud, O., Flagel, S.B., Robinson, T.E., Khamassi, M.: Modelling Individual Differences in the Form of Pavlovian Conditioned Approach Responses: A Dual Learning Systems Approach with Factored Representations. PLoS Comput Biol 10(2) (February 2014)

    Google Scholar 

  17. Minguez, J., Lamiraux, F., Laumond, J.P.: Motion planning and obstacle avoidance. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotics, pp. 827–852. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    Google Scholar 

  20. Watkins, C.: Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK (1989)

    Google Scholar 

  21. Yin, H.H., Ostlund, S.B., Balleine, B.W.: Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur. J. Neurosci. 28, 1437–1448 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Renaudo, E., Girard, B., Chatila, R., Khamassi, M. (2014). Design of a Control Architecture for Habit Learning in Robots. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics