Skip to main content

A SAT Attack on the Erdős Discrepancy Conjecture

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

In 1930s Paul Erdős conjectured that for any positive integer C in any infinite ±1 sequence (x n ) there exists a subsequence x d , x 2d , x 3d ,…, x kd , for some positive integers k and d, such that \(\mid \sum_{i=1}^k x_{id} \mid >C\). The conjecture has been referred to as one of the major open problems in combinatorial number theory and discrepancy theory. For the particular case of C = 1 a human proof of the conjecture exists; for C = 2 a bespoke computer program had generated sequences of length 1124 of discrepancy 2, but the status of the conjecture remained open even for such a small bound. We show that by encoding the problem into Boolean satisfiability and applying the state of the art SAT solver, one can obtain a discrepancy 2 sequence of length 1160 and a proof of the Erdős discrepancy conjecture for C = 2, claiming that no discrepancy 2 sequence of length 1161, or more, exists. We also present our partial results for the case of C = 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge University Press (1987)

    Google Scholar 

  2. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Cambridge University Press, New York (2000)

    Book  Google Scholar 

  3. Matousek, J.: Geometric Discrepancy: An Illustrated Guide. Algorithms and combinatorics, vol. 18. Springer (1999)

    Google Scholar 

  4. Beck, J., Sós, V.T.: Discrepancy theory. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1405–1446. Elsivier (1995)

    Google Scholar 

  5. Alon, N.: Transmitting in the n-dimensional cube. Discrete Applied Mathematics 37/38, 9–11 (1992)

    Article  Google Scholar 

  6. Muthukrishnan, S., Nikolov, A.: Optimal private halfspace counting via discrepancy. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1285–1292. ACM, New York (2012)

    Google Scholar 

  7. Matousek, J., Spencer, J.: Discrepancy in arithmetic progressions. Journal of the American Mathematical Society 9, 195–204 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Roth, K.F.: Remark concerning integer sequence. Acta Arithmetica 9, 257–260 (1964)

    MATH  MathSciNet  Google Scholar 

  9. Erdős, P.: Some unsolved problems. The Michigan Mathematical Journal 4(3), 291–300 (1957)

    Article  MathSciNet  Google Scholar 

  10. Nikolov, A., Talwar, K.: On the hereditary discrepancy of homogeneous arithmetic progressions. CoRR abs/1309.6034v1 (2013)

    Google Scholar 

  11. Gowers, T.: Erdős and arithmetic progressoins. In: Erdős Centennial Conference (2013), http://www.renyi.hu/conferences/erdos100/program.html , (accessed January 29, 2014)

  12. Borwein, P., Choi, S.K.K., Coons, M.: Completely multiplicative functions taking values in { 1, − 1 }. Transactions of the American Mathematical Society 362(12), 6279–6291 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mathias, A.R.D.: On a conjecture of Erdős and Čudakov. In: Combinatorics, Geometry and Probability (1993)

    Google Scholar 

  14. Erdős discrepancy problem: Polymath wiki, http://michaelnielsen.org/polymath1/index.php?title=The_Erd (accessed January 29, 2014)

  15. Gowers, T.: Is massively collaborative mathematics possible, http://gowers.wordpress.com/2009/01/27/is-massively-collaborative-mathematics-possible/ (accessed January 29 , 2014)

  16. Konev, B., Lisitsa, A.: Addendum to: A SAT attack on the Erdős discrepancy conjecture, http://www.csc.liv.ac.uk/~konev/SAT14

  17. Biere, A.: Bounded model checking. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)

    Google Scholar 

  18. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition 2013. In: Proceedings of SAT Competition 2013, pp. 51–52. University of Helsinki (2013)

    Google Scholar 

  19. Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT competition 2013. University of Helsinki (2013)

    Google Scholar 

  20. Audemard, G., Simon, L.: Glucose 2.3 in the SAT 2013 Competition. In: Proceedings of SAT Competition 2013, pp. 42–43. University of Helsinki (2013)

    Google Scholar 

  21. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings of Design, Automation and Test in Europe Conference and Exposition (DATE 2003), Munich, Germany, March 3-7, pp. 10886–10891 (2003)

    Google Scholar 

  22. Heule, M.J.H.: DRUP checker, http://www.cs.utexas.edu/~marijn/drup/ (accessed January 29 , 2014)

  23. Konev, B., Lisitsa, A.: A sat attack on the erdos discrepancy conjecture. CoRR abs/1402.2184 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Konev, B., Lisitsa, A. (2014). A SAT Attack on the Erdős Discrepancy Conjecture. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics