Skip to main content

Microfluidics in Planar Microchannels: Synthesis of Chemical Compounds On-Chip

  • Chapter
  • First Online:

Abstract

Microreactors are a wide class of devices that are currently playing a prominent role in several research fields such as biology, medicine, food chemistry, environmental analysis, up to the production of compounds in organic chemistry. Several typologies of microreactors have been produced with tubular or planar shapes, of different materials and designs. In this chapter, an overview of planar microchannel-based microreactors and their application to organic chemistry is given. Initially, after recalling the main theoretical parameters of microfluidics, an introduction of the proposed technology and the main requirements to perform mixing, which is essential to perform chemical synthesis on-chip, is presented. Silicon and glass microreactors, the most common planar systems for organic chemistry, are described with the aim of pointing out the most important parameters to be taken into consideration in the planning of a specific microreactor to be used for mixing, purification or crystallization of chemicals at the microscale. Then, several applications of initially described microreactors to organic chemistry for research applications are given. In the next section, the use of planar microchannel microreactors in the field of radiochemistry is reported. The radiopharmaceutical application is not casual, being a sector in which the microreactor technology is very promising, due to the need of quickly producing small and fresh amounts of products in a controlled environment. Finally, for completeness, other approaches beyond planar microchannels are mentioned: mesoreactors towards industrial level synthesis and micro-vessels for radiochemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson H, Pillarsetty N, Cantorias M, Lewis JS (2010) Improved synthesis of 2′-deoxy-2′-[18F]-fluoro-1-beta-d-arabinofuranosyl-5-iodouracil ([18F]-FIAU). Nucl Med Biol 37(4):439–442

    Google Scholar 

  • Arima V, Pascali G, Lade O, Kretschmer HR, Bernsdorf I, Hammond V, Watts P, De Leonardis F, Tarn MD, Pamme N (2013) Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab Chip 13(12):2328–2336

    Google Scholar 

  • Bej SK, Dabral RP, Gupta PC, Mittal KK, Sen GS, Kapoor VK, Dalai AK (2000) Studies on the performance of a microscale trickle bed reactor using different sizes of diluent. Energ Fuel 14(3):701–705

    Google Scholar 

  • Bej SK, Dalai AK, Maity SK (2001) Effect of diluent size on the performance of a micro-scale fixed bed multiphase reactor in up flow and down flow modes of operation. Catal Today 64(3–4):333–345

    Google Scholar 

  • Bogdan AR, Poe SL, Kubis DC, Broadwater SJ, McQuade DT (2009) The continuous-flow synthesis of ibuprofen. Angew Chem Int Ed 48(45):8547–8550

    Google Scholar 

  • Cai L, Lu S, Pike V (2008) Chemistry with [18F]fluoride ion. Eur J Org Chem 17:2853–2873

    Google Scholar 

  • Causon TJ, Broeckhoven K, Hilder EF, Shellie RA, Desmet G, Eeltink S (2011) Kinetic performance optimisation for liquid chromatography: principles and practice. J Sep Sci 34(8):877–887

    Google Scholar 

  • Cortes-Quiroz CA, Azarbadegan A, Zangeneh M, Goto A (2010) Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer. Chem Eng J 160(3):852–864

    Google Scholar 

  • Chen S, Javed R, Lei J, Kim H-K, Flores G, Dam RMV, Keng PY, Kim C-J (2012) Synthesis of diverse tracers on EWOD microdevice for positron emission tomography (PET). In: Solid-state sensors, actuators and microsystems workshop, Hilton Island, SC, 3–7 June 2012

    Google Scholar 

  • Chun J-H, Pike VW (2012) Single-step radiosynthesis of “18F-Labeled Click Synthons” from azide-functionalized diaryliodonium salts. Eur J Org Chem 2012(24):4541–4547

    Google Scholar 

  • Chun JH, Lu S, Lee YS, Pike VW (2010) Fast and high-yield microreactor syntheses of ortho-substituted [(18)F]fluoroarenes from reactions of [(18)F]fluoride ion with diaryliodonium salts. J Org Chem 75(10):3332–3338

    Google Scholar 

  • Chambers RD, Spink RCH (1999) Microreactors for elemental fluorine. Chem Commun 10:883–884

    Google Scholar 

  • De Leonardis F, Pascali G, Salvadori PA, Watts P, Pamme N (2011) On-chip pre-concentration and complexation of [18F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of positron emission tomography tracers. J Chromatogr A 1218(29):4714–4719

    Google Scholar 

  • Elizarov AM (2009) Microreactors for radiopharmaceutical synthesis. Lab Chip 9(10):1326–1333

    Google Scholar 

  • Elizarov AM, van Dam RM, Shin YS, Kolb HC, Padgett HC, Stout D, Shu J, Huang J, Daridon A, Heath JR (2010) Design and optimization of coin-shaped microreactor chips for PET radiopharmaceutical synthesis. J Nucl Med 51(2):282–287

    Google Scholar 

  • Erickson D, Li D (2002) Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18(5):1883–1892

    Google Scholar 

  • Fang H, Xiao Q, Wu F, Floreancig PE, Weber SG (2010) Rapid catalyst screening by a continuous-flow microreactor interfaced with ultra-high-pressure liquid chromatography. J Org Chem 75(16):5619–5626

    Google Scholar 

  • Fortt R, Wootton RCR, de Mello AJ (2003) Continuous-flow generation of anhydrous diazonium species: monolithic microfluidic reactors for the chemistry of unstable intermediates. Org Process Res Dev 7(5):762–768

    Google Scholar 

  • Fuchtner F, Preusche S, Mading P, Zessin J, Steinbach J (2008) Factors affecting the specific activity of [18F]fluoride from a [18O]water target. Nuklearmedizin 47(3):116–119

    Google Scholar 

  • Gaja V, Gómez-Vallejo V, Cuadrado-Tejedor M, Borrell JI, Llop J (2012) Synthesis of 13N-labelled radiotracers by using microfluidic technology. J Labelled Comp Rad 55(9):332–338

    Google Scholar 

  • Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Dekker BA, Zweit J (2006a) Microfluidic technology for PET radiochemistry. Appl Radiat Isot 64(3):333–336

    Google Scholar 

  • Gillies JM, Prenant C, Chimon GN, Smethurst GJ, Perrie W, Hamblett I, Dekker B, Zweit J (2006b) Microfluidic reactor for the radiosynthesis of PET radiotracers. Appl Radiat Isot 64(3):325–332

    Google Scholar 

  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11(2):126

    Google Scholar 

  • Gustafsson T, Gilmour R, Seeberger PH (2008) Fluorination reactions in microreactors. Chem Commun 26:3022–3024

    Google Scholar 

  • Hamacher K, Hirschfelder T, Coenen HH (2002) Electrochemical cell for separation of [18F]fluoride from irradiated 18O-water and subsequent no carrier added nucleophilic fluorination. Appl Radiat Isot 56(3):519–523

    Google Scholar 

  • Hardt S, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: II. Numerical simulations. AIChE J 49(3):578–584

    Google Scholar 

  • Hartman RL (2012) Managing solids in microreactors for the upstream continuous processing of fine chemicals. Org Process Res Dev 16(5):870–887

    Google Scholar 

  • Haselhuhn F, Kind M (2003) Pseudo-polymorphic behavior of precipitated calcium oxalate. Chem Eng Technol 26(3):347–353

    Google Scholar 

  • Hessel V, Hardt S, Löwe H, Schönfeld F (2003) Laminar mixing in different interdigital micromixers: I. Experimental characterization. AIChE J 49(3):566–577

    Google Scholar 

  • Hessel V, Hofmann C, Löb P, Löhndorf J, Löwe H, Ziogas A (2005a) Aqueous Kolbe−Schmitt synthesis using resorcinol in a microreactor laboratory rig under high-p, T conditions. Org Process Res Dev 9(4):479–489

    Google Scholar 

  • Hessel V, Löwe H, Schönfeld F (2005b) Micromixers – a review on passive and active mixing principles. Chem Eng Sci 60(8–9):2479–2501

    Google Scholar 

  • Hopkin MD, Baxendale IR, Ley SV (2010) A flow-based synthesis of Imatinib: the API of Gleevec. Chem Commun 46(14):2450–2452

    Google Scholar 

  • Hossain S, Ansari MA, Kim K-Y (2009) Evaluation of the mixing performance of three passive micromixers. Chem Eng J 150(2–3):492–501

    Google Scholar 

  • http://www.advion.com/products/nanotek/

  • http://www.futurechemistry.com/home.html

  • http://www.scintomics.com/en/production/-mu-icr/index.html

  • Iwasaki T, Yoshida JI (2005) Free radical polymerization in microreactors. Significant improvement in molecular weight distribution control. Macromolecules 38(4):1159–1163

    Google Scholar 

  • Jung YJ, Park SH, Song KH, Choe J (2012) Recrystallization of polyethylene submicron particles using a continuous flow micromixer system. Powder Technol 217:325–329

    Google Scholar 

  • Kanno K-I, Maeda H, Izumo S, Ikuno M, Takeshita K, Tashiro A, Fujii M (2002) Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor. Lab Chip 2(1):15–18

    Google Scholar 

  • Kealey S, Plisson C, Collier TL, Long NJ, Husbands SM, Martarello L, Gee AD (2011) Microfluidic reactions using [11C]carbon monoxide solutions for the synthesis of a positron emission tomography radiotracer. Org Biomol Chem 9(9):3313–3319

    Google Scholar 

  • Keng PY, Chen S, Ding H, Sadeghi S, Shah GJ, Dooraghi A, Phelps ME, Satyamurthy N, Chatziioannou AF, Kim CJ, van Dam RM (2012) Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proc Natl Acad Sci U S A 109(3):690–695

    Google Scholar 

  • Kim DJ, Oh HJ, Park TH, Choo JB, Lee SH (2005) An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions. Analyst 130(3):293–298

    Google Scholar 

  • Kim DS, Lee SW, Kwon TH, Lee SS (2004) A barrier embedded chaotic micromixer. J Micromech Microeng 14(6):798

    Google Scholar 

  • Kopach ME, Murray MM, Braden TM, Kobierski ME, Williams OL (2009) Improved synthesis of 1-(azidomethyl)-3,5-bis-(trifluoromethyl)benzene: development of batch and microflow azide processes. Org Process Res Dev 13(2):152–160

    Google Scholar 

  • Kutter JP (2012) Liquid phase chromatography on microchips. J Chromatogr A 1221:72–82

    Google Scholar 

  • Lapi SE, Welch MJ (2012) A historical perspective on the specific activity of radiopharmaceuticals: what have we learned in the 35 years of the ISRC? Nucl Med Biol 39(5):601–608

    Google Scholar 

  • Lebedev A, Miraghaie R, Kotta K, Ball CE, Zhang J, Buchsbaum MS, Kolb HC, Elizarov A (2013) Batch-reactor microfluidic device: first human use of a microfluidically produced PET radiotracer. Lab Chip 13(1):136–145

    Google Scholar 

  • Lee C-C, Sui G, Elizarov A, Shu CJ, Shin Y-S, Dooley AN, Huang J, Daridon A, Wyatt P, Stout D, Kolb HC, Witte ON, Satyamurthy N, Heath JR, Phelps ME, Quake SR, Tseng H-R (2005) Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 310(5755):1793–1796

    Google Scholar 

  • Lee C-Y, Chang C-L, Wang Y-N, Fu L-M (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287

    Google Scholar 

  • Liang SH, Collier TL, Rotstein BH, Lewis R, Steck M, Vasdev N (2013) Rapid microfluidic flow hydrogenation for reduction or deprotection of 18F-labeled compounds. Chem Commun 49(78):8755–8757

    Google Scholar 

  • Liu K, Lepin EJ, Wang MW, Guo F, Lin WY, Chen YC, Sirk SJ, Olma S, Phelps ME, Zhao XZ, Tseng HR, Michael van Dam R, Wu AM, Shen CK (2011) Microfluidic-based 18F-labeling of biomolecules for immuno-positron emission tomography. Mol Imaging 10(3):168–176, 161–167

    Google Scholar 

  • Lu S-Y, Watts P, Chin FT, Hong J, Musachio JL, Briard E, Pike VW (2004) Syntheses of 11C- and 18F-labeled carboxylic esters within a hydrodynamically-driven micro-reactor. Lab Chip 4(6):523–525

    Google Scholar 

  • Lu S, Giamis AM, Pike VW (2009) Synthesis of [18F]Fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies. Curr Radiopharm 2(1):49–55

    Google Scholar 

  • Lu S, Pike VW (2010) Synthesis of [18F]xenon difluoride as a radiolabeling reagent from [18F]fluoride ion in a micro-reactor and at production scale. J Fluor Chem 131(10):1032–1038

    Google Scholar 

  • Ma X, Tseng W-Y, Eddings M, Keng PY, van Dam RM (2014) A microreactor with phase-change microvalves for batch chemical synthesis at high temperatures and pressures. Lab Chip 14(2):280–285

    Google Scholar 

  • Mae K, Maki T, Hasegawa I, Eto U, Mizutani Y, Honda N (2004) Development of a new micromixer based on split/recombination for mass production and its application to soap free emulsifier. Chem Eng J 101(1–3):31–38

    Google Scholar 

  • Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16(4):503–516

    Google Scholar 

  • McMullen JP, Stone MT, Buchwald SL, Jensen KF (2010) An integrated microreactor system for self-optimization of a heck reaction: from micro- to mesoscale flow systems. Angew Chem Int Ed 49(39):7076–7080

    Google Scholar 

  • Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A Gen 315:1–17

    Google Scholar 

  • Mengeaud V, Josserand J, Girault HH (2002) Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem 74(16):4279–4286

    Google Scholar 

  • Miller PW, Audrain H, Bender D, deMello AJ, Gee AD, Long NJ, Vilar R (2011) Rapid carbon-11 radiolabelling for PET using microfluidics. Chemistry 17(2):460–463

    Google Scholar 

  • Miller PW, Long NJ, Vilar R, Gee AD (2008) Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem 47(47):8998–9033

    Google Scholar 

  • Mitchell MC, Spikmans V, Mello AJD (2001) Microchip-based synthesis and analysis: control of multicomponent reaction products and intermediates. Analyst 126(1):24–27

    Google Scholar 

  • Moon B-U, Koster S, Wientjes KJC, Kwapiszewski RM, Schoonen AJM, Westerink BHC, Verpoorte E (2010) An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application. Anal Chem 82(16):6756–6763

    Google Scholar 

  • Morini GL (2004) Single-phase convective heat transfer in microchannels: a review of experimental results. Int J Therm Sci 43(7):631–651

    Google Scholar 

  • Murphy ER, Martinelli JR, Zaborenko N, Buchwald SL, Jensen KF (2007) Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. Angew Chem Int Ed 46(10):1734–1737

    Google Scholar 

  • Nagaki A, Tomida Y, Yoshida JI (2008) Microflow-system-controlled anionic polymerization of styrenes. Macromolecules 41(17):6322–6330

    Google Scholar 

  • Nguyen NT, Wu ZG (2005) Micromixers – a review. J Micromech Microeng 15(2):R1–R16

    Google Scholar 

  • Ohkawa K, Nakamoto T, Izuka Y, Hirata Y, Inoue Y (2008) Flow and mixing characteristics of σ-type plate static mixer with splitting and inverse recombination. Chem Eng Res Des 86(12):1447–1453

    Google Scholar 

  • Okubo Y, Toma M, Ueda H, Maki T, Mae K (2004) Microchannel devices for the coalescence of dispersed droplets produced for use in rapid extraction processes. Chem Eng J 101(1–3):39–48

    Google Scholar 

  • Panić S, Loebbecke S, Tuercke T, Antes J, Bošković D (2004) Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem Eng J 101(1–3):409–419

    Google Scholar 

  • Pascali G, Mazzone G, Saccomanni G, Manera C, Salvadori PA (2010) Microfluidic approach for fast labeling optimization and dose-on-demand implementation. Nucl Med Biol 37(5):547–555

    Google Scholar 

  • Pascali G, Nannavecchia G, Pitzianti S, Salvadori PA (2011) Dose-on-demand of diverse 18F-fluorocholine derivatives through a two-step microfluidic approach. Nucl Med Biol 38(5):637–644

    Google Scholar 

  • Pascali G, Watts P, Salvadori PA (2013) Microfluidics in radiopharmaceutical chemistry. Nucl Med Biol 40(6):776–787

    Google Scholar 

  • Pascali G, Berton A, Rosaria DeSimone M, Wyatt N, Matesic L, Greguric I, Salvadori PA (2014) Hardware and software modifications on the Advion NanoTek microfluidic platform to extend flexibility for radiochemical synthesis. Appl Radiat Isot 84:40–47

    Google Scholar 

  • Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci 97(16):9226–9233

    Google Scholar 

  • Razzaq T, Glasnov TN, Kappe CO (2009) Continuous-flow microreactor chemistry under high-temperature/pressure conditions. Eur J Org Chem 2009(9):1321–1325

    Google Scholar 

  • Rebrov EV, Duisters T, Löb P, Meuldijk J, Hessel V (2012) Enhancement of the liquid-side mass transfer in a falling film catalytic microreactor by in-channel mixing structures. Ind Eng Chem Res 51(26):8719–8725

    Google Scholar 

  • Rensch C, Jackson A, Lindner S, Salvamoser R, Samper V, Riese S, Bartenstein P, Wängler C, Wängler B (2013) Microfluidics: a groundbreaking technology for PET tracer production? Molecules 18(7):7930–7956

    Google Scholar 

  • Richter S, Bouvet V, Wuest M, Bergmann R, Steinbach J, Pietzsch J, Neundorf I, Wuest F (2012) (18)F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells. Nucl Med Biol 39(8):1202–1212

    Google Scholar 

  • Riva E, Gagliardi S, Martinelli M, Passarella D, Vigo D, Rencurosi A (2010) Reaction of Grignard reagents with carbonyl compounds under continuous flow conditions. Tetrahedron 66(17):3242–3247

    Google Scholar 

  • Sadeghi S, Liang V, Cheung S, Woo S, Wu C, Ly J, Deng Y, Eddings M, van Dam RM (2013) Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers. Appl Radiat Isot 75:85–94

    Google Scholar 

  • Saito F, Nagashima Y, Goto A, Iwaki M, Takahashi N, Oka T, Inoue T, Hyodo T (2007) Electrochemical transfer of (18)F from (18)O water to aprotic polar solvent. Appl Radiat Isot 65(5):524–527

    Google Scholar 

  • Schonfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform “chaotic” mixing. Lab Chip 4(1):65–69

    Google Scholar 

  • Schwalbe T, Autze V, Wille G (2002) Chemical synthesis in microreactors. CHIMIA Int J Chem 56(11):636–646

    Google Scholar 

  • Schwarzer H-C, Peukert W (2004) Combined experimental/numerical study on the precipitation of nanoparticles. AIChE J 50(12):3234–3247

    Google Scholar 

  • Schwarzer H-C, Schwertfirm F, Manhart M, Schmid H-J, Peukert W (2006) Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem Eng Sci 61(1):167–181

    Google Scholar 

  • Serdons K, Verbruggen A, Bormans GM (2009) Developing new molecular imaging probes for PET. Methods 48(2):104–111

    Google Scholar 

  • Singh BK, Kaval N, Tomar S, Eycken EVD, Parmar VS (2008) Transition metal-catalyzed carbon−carbon bond formation Suzuki, Heck, and Sonogashira reactions using microwave and microtechnology. Org Process Res Dev 12(3):468–474

    Google Scholar 

  • Soleymani A, Kolehmainen E, Turunen I (2008) Numerical and experimental investigations of liquid mixing in T-type micromixers. Chem Eng J 135(Suppl):S219–S228

    Google Scholar 

  • Sprogies T, Köhler JM, Groß GA (2008) Evaluation of static micromixers for flow-through extraction by emulsification. Chem Eng J 135(Suppl):S199–S202

    Google Scholar 

  • Ståhl M, Åslund BL, Rasmuson ÅC (2001) Reaction crystallization kinetics of benzoic acid. AIChE J 47(7):1544–1560

    Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Google Scholar 

  • Suga S, Nagaki A, Yoshida J-I (2003) Highly selective Friedel-Crafts monoalkylation using micromixing. Chem Commun 3:354–355

    Google Scholar 

  • Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111

    Google Scholar 

  • Tarn MD, Pascali G, De Leonardis F, Watts P, Salvadori PA, Pamme N (2013) Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. J Chromatogr A 1280:117–121

    Google Scholar 

  • Thayer AM (2005) Harnessing microreactions. Chem Eng News 83(22):43–52

    Google Scholar 

  • Ueno M, Hisamoto H, Kitamori T, Kobayashi S (2003) Phase-transfer alkylation reactions using microreactors. Chem Commun 8:936–937

    Google Scholar 

  • van Herk D, Castaño P, Makkee M, Moulijn JA, Kreutzer MT (2009) Catalyst testing in a multiple-parallel, gas–liquid, powder-packed bed microreactor. Appl Catal A Gen 365(2):199–206

    Google Scholar 

  • Wang L, Liu D, Wang X, Han X (2012) Mixing enhancement of novel passive microfluidic mixers with cylindrical grooves. Chem Eng Sci 81:157–163

    Google Scholar 

  • Watts P, Pascali G, Salvadori PA (2012) Positron emission tomography radiosynthesis in microreactors. J Flow Chem 2(2):37–42

    Google Scholar 

  • Wheeler TD, Zeng D, Desai AV, Onal B, Reichert DE, Kenis PJ (2010) Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine. Lab Chip 10(24):3387–3396

    Google Scholar 

  • Wiles C, Watts P (2011) Recent advances in micro reaction technology. Chem Commun 47(23):6512–6535

    Google Scholar 

  • Wiles C, Watts P (2012) Continuous flow reactors: a perspective. Green Chem 14(1):38–54

    Google Scholar 

  • Wilson NS, Sarko CR, Roth GP (2004) Development and applications of a practical continuous flow microwave cell. Org Process Res Dev 8(3):535–538

    Google Scholar 

  • Wong R, Iwata R, Saiki H, Furumoto S, Ishikawa Y, Ozeki E (2012) Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds. Appl Radiat Isot 70(1):193–199

    Google Scholar 

  • Wu C-Y, Tsai R-T (2013) Fluid mixing via multidirectional vortices in converging-diverging meandering microchannels with semi-elliptical side walls. Chem Eng J 217:320–328

    Google Scholar 

  • Zeng D, Desai AV, Ranganathan D, Wheeler TD, Kenis PJ, Reichert DE (2013) Microfluidic radiolabeling of biomolecules with PET radiometals. Nucl Med Biol 40(1):42–51

    Google Scholar 

  • Ziegenbalg D, Löb P, Al-Rawashdeh MM, Kralisch D, Hessel V, Schönfeld F (2010) Use of “smart interfaces” to improve the liquid-sided mass transport in a falling film microreactor. Chem Eng Sci 65(11):3557–3566

    Google Scholar 

  • Zuidhof NT, de Croon MHJM, Schouten JC, Tinge JT (2012) Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam in a microreactor. Chem Eng Technol 35(7):1257–1261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Arima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arima, V., Watts, P., Pascali, G. (2015). Microfluidics in Planar Microchannels: Synthesis of Chemical Compounds On-Chip. In: Castillo-León, J., Svendsen, W. (eds) Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-08687-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08687-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08686-6

  • Online ISBN: 978-3-319-08687-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics