Skip to main content

The Fractal Dimension of SAT Formulas

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8562))

Abstract

Modern SAT solvers have experienced a remarkable progress on solving industrial instances. Most of the techniques have been developed after an intensive experimental process. It is believed that these techniques exploit the underlying structure of industrial instances. However, there is not a precise definition of the notion of structure.

Recently, there have been some attempts to analyze this structure in terms of complex networks, with the long-term aim of explaining the success of SAT solving techniques, and possibly improving them.

We study the fractal dimension of SAT instances with the aim of complementing the model that describes the structure of industrial instances. We show that many industrial families of formulas are self-similar, with a small fractal dimension. We also show how this dimension is affected by the addition of learnt clauses during the execution of SAT solvers.

This research has been partially founded by the MINECO research project TASSAT (TIN2010-20967).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., Jeong, H., Barabási, A.-L.: The diameter of the WWW. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  2. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances. In: IJCAI 2009, pp. 387–392 (2009)

    Google Scholar 

  4. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Katsirelos, G., Simon, L.: Eigenvector centrality in industrial SAT instances. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 348–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Mandelbrot, B.B.: The fractal geometry of nature. Macmillan (1983)

    Google Scholar 

  9. Papadopoulos, F., Kitsak, M., Serrano, M., Bogu, M., Krioukov, D.: Popularity versus similarity in growing networks. Nature 489, 537–540 (2012)

    Article  Google Scholar 

  10. Song, C., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. Journal of Statistical Mechanics: Theory and Experiment 2007(03), P03006 (2007)

    Google Scholar 

  11. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433, 392–395 (2005)

    Article  Google Scholar 

  12. Walsh, T.: Search in a small world. In: IJCAI 1999, pp. 1172–1177 (1999)

    Google Scholar 

  13. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI 2003, pp. 1173–1178 (2003)

    Google Scholar 

  14. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32(1), 565–606 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J. (2014). The Fractal Dimension of SAT Formulas. In: Demri, S., Kapur, D., Weidenbach, C. (eds) Automated Reasoning. IJCAR 2014. Lecture Notes in Computer Science(), vol 8562. Springer, Cham. https://doi.org/10.1007/978-3-319-08587-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08587-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08586-9

  • Online ISBN: 978-3-319-08587-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics