Skip to main content

Fundamental Theory for Nonaqueous-Phase-Liquid Dissolution-Front Instability Problems in Fluid-Saturated Porous Media

  • Chapter
  • First Online:
Physical and Chemical Dissolution Front Instability in Porous Media

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

The transport of nonaqueous phase liquids (NAPLs) in contaminated subsurface is an important problem in geoenvironmental engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt-Epping P, Smith L (2001) Computing geochemical mass transfer and water/rock ratios in submarine hydrothermal systems: implications for estimating the vigour of convection. Geofluids 1:163–181

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. American Elsevier Publishing Company, New York

    Google Scholar 

  • Chadam J, Hoff D, Merino E, Ortoleva P, Sen A (1986) Reactive infiltration instabilities. IMA J Appl Math 36:207–221

    Article  Google Scholar 

  • Chadam J, Ortoleva P, Sen A (1988) A weekly nonlinear stability analysis of the reactive infiltration interface. IMA J Appl Math 48:1362–1378

    Google Scholar 

  • Chen JS, Liu CW (2002) Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport. Comput Geosci 28:485–499

    Article  Google Scholar 

  • Chen JS, Liu CW, Lai GX, Ni CF (2009) Effects of mechanical dispersion on the morphological evolution of a chemical dissolution front in a fluid-saturated porous medium. J Hydrol 373:96–102

    Article  Google Scholar 

  • Geller JT, Hunt JR (1993) Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour Res 29:833–845

    Article  Google Scholar 

  • Imhoff PT, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 1. Model predictions. Water Resour Res 32:1919–1928

    Article  Google Scholar 

  • Imhoff PT, Jaffe PR, Pinder GF (1994) An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media. Water Resour Res 30:307–320

    Article  Google Scholar 

  • Imhoff PT, Thyrum GP, Miller CT (1996) Dissolution fingering during the solubilization of nonaqueous phase liquids in saturated porous media: 2. Experimental observations. Water Resour Res 32:1929–1942

    Article  Google Scholar 

  • Imhoff PT, Farthing MW, Gleyzer SN, Miller CT (2002) Evolving interface between clean and nonaqueous phase liquid (NAPL)-contaminated regions in two-dimensional porous media. Water Resour Res 38:1093–1106

    Article  Google Scholar 

  • Imhoff PT, Farthing MW, Miller CT (2003) Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients. Adv Water Resour 26:1097–1111

    Article  Google Scholar 

  • Miller CT, Poirier-McNeil MM, Mayer AS (1990) Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics. Water Resour Res 26:2783–2796

    Article  Google Scholar 

  • Miller CT, Christakos TG, Imhoff PT, McBride JF, Pedit JA, Trangenstein JA (1998) Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches. Adv Water Resour 21:77–120

    Article  Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Book  Google Scholar 

  • Ormond A, Ortoleva P (2000) Numerical modeling of reaction-induced cavities in a porous rock. J Geophys Res 105:16737–16747

    Article  Google Scholar 

  • Ortoleva P, Chadam J, Merino E, Sen A (1987) Geochemical self-organization II: the reactive-infiltration instability. Am J Sci 287:1008–1040

    Article  Google Scholar 

  • Powers SE, Abriola LM, Weber WJ Jr (1994) An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res 30:321–332

    Article  Google Scholar 

  • Raffensperger JP, Garven G (1995) The formation of unconformity-type uranium ore deposits: coupled hydrochemical modelling. Am J Sci 295:639–696

    Article  Google Scholar 

  • Renard F, Gratier JP, Ortoleva P, Brosse E, Bazin B (1998) Self-organization during reactive fluid flow in a porous medium. Geophys Res Lett 25:385–388

    Article  Google Scholar 

  • Schafer D, Schafer W, Kinzelbach W (1998a) Simulation of reactive processes related to biodegradation in aquifers: 1. Structure of the three-dimensional reactive transport model. J Contam Hydrol 31:167–186

    Article  Google Scholar 

  • Schafer D, Schafer W, Kinzelbach W (1998b) Simulation of reactive processes related to biodegradation in aquifers: 2. Model application to a column study on organic carbon degradation. J Contam Hydrol 31:187–209

    Article  Google Scholar 

  • Seyedabbasi MA, Farthing MW, Imhoff PT, Miller CT (2008) The influence of wettability on NAPL dissolution fingering. Adv Water Resour 31:1687–1696

    Article  Google Scholar 

  • Soerens TS, Sabatini DA, Harwell JH (1998) Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characteristics of NAPL dissolution. Water Resour Res 34:1657–1673

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1990) Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior DC, Basset RL (eds) Chemical modeling in aqueous systems II, vol 416. American chemistry society symposium series, pp 213–225

    Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Willson CS, Hall JL, Miller CT, Imhoff PT (1999) Factors affecting bank formation during surfactant-enhanced mobilization of residual NAPL. Environ Sci Technol 33:2440–2446

    Article  Google Scholar 

  • Xu TF, Samper J, Ayora C, Manzano M, Custodio E (1999) Modelling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J Hydrol 214:144–164

    Article  Google Scholar 

  • Yeh GT, Tripathi VS (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27:3075–3094

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Mühlhaus HB (1998) Finite element modelling of temperature gradient driven rock alteration and mineralization in porous rock masses. Comput Meth Appl Mech Eng 165:175–187

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Mühlhaus HB, Ord A, Lin G (2003) Finite element modeling of three-dimensional steady-state convection and lead/zinc mineralization in fluid-saturated rocks. J Comput Meth Sci Eng 3:73–89

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S, Mühlhaus HB, Liu L (2005) Numerical modeling of chemical effects of magma solidification problems in porous rocks. Int J Numer Meth Eng 64:709–728

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Hornby P, Ord A, Peng S (2006) Numerical modelling of fluids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-saturated porous rocks. Int J Numer Meth Eng 66:1061–1078

    Article  Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2008a) Convective and advective heat transfer in geological systems. Springer, Berlin

    Google Scholar 

  • Zhao C, Hobbs BE, Hornby P, Ord A, Peng S, Liu L (2008b) Theoretical and numerical analyses of chemical-dissolution front instability in fluid-saturated porous rocks. Int J Numer Anal Meth Geomech 32:1107–1130

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Hornby P, Peng S (2008c) Effect of reactive surface areas associated with different particle shapes on chemical-dissolution front instability in fluid-saturated porous rocks. Transp Porous Media 73:75–94

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2009) Fundamentals of computational geoscience: numerical methods and algorithms. Springer, Berlin

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A, Peng S (2010a) Effects of mineral dissolution ratios on chemical-dissolution front instability in fluid-saturated porous media. Transp Porous Media 82:317–335

    Google Scholar 

  • Zhao C, Hobbs BE, Ord A (2010b) Theoretical analyses of nonaqueous-phase-liquid dissolution induced instability in two-dimensional fluid-saturated porous media. Int J Numer Anal Meth Geomech 34:1767–1796

    Google Scholar 

  • Zhao C, Hobbs BE, Regenauer-Lieb K, Ord A (2011) Computational simulation for the morphological evolution of nonaqueous-phase-liquid dissolution fronts in two-dimensional fluid-saturated porous media. Comput Geosci 15:167–183

    Article  Google Scholar 

  • Zienkiewicz OC (1977) The finite element method. McGraw-Hill, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongbin Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhao, C. (2014). Fundamental Theory for Nonaqueous-Phase-Liquid Dissolution-Front Instability Problems in Fluid-Saturated Porous Media. In: Physical and Chemical Dissolution Front Instability in Porous Media. Lecture Notes in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-08461-9_9

Download citation

Publish with us

Policies and ethics