Skip to main content

Covering Problems in Edge- and Node-Weighted Graphs

  • Conference paper
Book cover Algorithm Theory – SWAT 2014 (SWAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8503))

Included in the following conference series:

Abstract

This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateni, M., Hajiaghayi, M., Liaghat, V.: Improved approximation algorithms for (budgeted) node-weighted Steiner problems. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 81–92. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Berger, A., Fukunaga, T., Nagamochi, H., Parekh, O.: Approximability of the capacitated b-edge dominating set problem. Theoretical Computer Science 385(1-3), 202–213 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Algorithmica 50(2), 244–254 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berger, A., Parekh, O.: Erratum to: Linear time algorithms for generalized edge dominating set problems. Algorithmica 62(1-2), 633–634 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. Journal of the ACM 60(1), 6 (2013)

    Article  MathSciNet  Google Scholar 

  6. Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A \(2\frac{1}{10}\)-approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization 5(3), 317–326 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., Sivakumar, D.: On the hardness of approximating multicut and sparsest-cut. Computational Complexity 15(2), 94–114 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chekuri, C., Ene, A., Vakilian, A.: Prize-collecting survivable network design in node-weighted graphs. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 98–109. Springer, Heidelberg (2012)

    Google Scholar 

  9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23(4), 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118(3), 199–207 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fukunaga, T.: Spider covers for prize-collecting network activation problem. CoRR abs/1310.5422 (2013)

    Google Scholar 

  12. Fukunaga, T.: Covering problems in edge- and node-weighted graphs. CoRR abs/1404.4123 (2014)

    Google Scholar 

  13. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goemans, M.X., Olver, N., Rothvoß, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic steiner tree relaxations. In: STOC, pp. 1161–1176 (2012)

    Google Scholar 

  16. Hajiaghayi, M., Liaghat, V., Panigrahi, D.: Online node-weighted Steiner forest and extensions via disk paintings. In: FOCS, pp. 558–567 (2013)

    Google Scholar 

  17. Kamiyama, N.: The prize-collecting edge dominating set problem in trees. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 465–476. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. Journal of Algorithms 19(1), 104–115 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Könemann, J., Sadeghabad, S.S., Sanità, L.: An LMP O(logn)-approximation algorithm for node weighted prize collecting Steiner tree. In: FOCS, pp. 568–577 (2013)

    Google Scholar 

  21. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted Steiner tree problems. SIAM Journal on Computing 37(2), 460–481 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Naor, J., Panigrahi, D., Singh, M.: Online node-weighted Steiner tree and related problems. In: FOCS, pp. 210–219 (2011)

    Google Scholar 

  23. Nutov, Z.: Approximating Steiner networks with node-weights. SIAM Journal on Computing 39(7), 3001–3022 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nutov, Z.: Approximating minimum-cost connectivity problems via uncrossable bifamilies. ACM Transactions on Algorithms 9(1), 1 (2012)

    Article  MathSciNet  Google Scholar 

  25. Nutov, Z.: Survivable network activation problems. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 594–605. Springer, Heidelberg (2012)

    Google Scholar 

  26. Panigrahi, D.: Survivable network design problems in wireless networks. In: SODA, pp. 1014–1027 (2011)

    Google Scholar 

  27. Parekh, O.: Approximation algorithms for partially covering with edges. Theoretical Computer Science 400(1-3), 159–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vakilian, A.: Node-weighted prize-collecting survivable network design problems. Master’s thesis, University of Illinois at Urbana-Champaign (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fukunaga, T. (2014). Covering Problems in Edge- and Node-Weighted Graphs. In: Ravi, R., Gørtz, I.L. (eds) Algorithm Theory – SWAT 2014. SWAT 2014. Lecture Notes in Computer Science, vol 8503. Springer, Cham. https://doi.org/10.1007/978-3-319-08404-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08404-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08403-9

  • Online ISBN: 978-3-319-08404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics