Skip to main content

Adaptive Model-Based Monitoring for Robots

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 302))

Abstract

Continuous and comprehensive monitoring is a key requirement for reliable failure detection. However, the overhead of the observation process conflicts with the limited resources of a robot platform. Therefore, robot monitoring faces high efficiency requirements. This defines a trade-off between comprehensive observation and monitoring resource overhead. In this paper, we propose an adaptive, model-based monitoring approach that addresses this trade-off. We specify an individual monitoring configuration in an abstract system model to focus the observation on expressive state aspects. Moreover, we introduce adaptivity to further improve the efficiency of the monitoring process. To evaluate this efficiency, we compare our approach with a reference monitoring system. Due to our results, we are confident that the proposed approach significantly reduces the resource overhead.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, S., Cho, H., Yoon, K.J., Lee, J.: Intelligent Autonomous Systems 12. Springer Advances in Intelligent Systems and Computing, Vol. 194 (2013)

    Google Scholar 

  2. Jung, M., Kazanzides, P.: Run-time Safety Framework for Component-based Medical Robots. In: International Conference on Cyper-Physical System, Philadelphia (2013)

    Google Scholar 

  3. Hill, J., Sutherland, H., Staudinger, P., Silveria, T., Schmidt, D.C., Slaby, J., Visnevski, N.: OASIS : An Architecture for Dynamic Instrumentation of Enterprise Distributed Real-time and Embedded Systems. Computer System Science and Engineering (Real-time Systems) (2011)

    Google Scholar 

  4. Steinbauer, G., Wotawa, F.: Detecting and locating faults in the control software of autonomous mobile robots. In: International Joint Conference on Artificial Intelligence, Edinburgh (2005)

    Google Scholar 

  5. Dekhil, M., Henderson, T.C.: Instrumented Sensor System Architecture. The International Journal of Robotics Research 17(4) (April 1998) 402–417.

    Article  Google Scholar 

  6. Elkady, A., Sobh, T.: Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography. Journal of Robotics (2012)

    Google Scholar 

  7. Quigley, M., Conley, K., Brian P., G., Josh, F., Tully, F., Jeremy, L., Rob, W., Andrew Y., N.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software. (2009)

    Google Scholar 

  8. Volpe, R., Nesnas, I., Estlin, T., Mutz, D.: CLARAty: Coupled layer architecture for robotic autonomy. JPL Technical Report (December) (2000) 116

    Google Scholar 

  9. Simmons, R., Apfelbaum, D.: A task description language for robot control. International Conference on Intelligent Robots and Systems 3 (1998)

    Google Scholar 

  10. Steinbauer, G., Martin, M., Wotawa, F.: Real-Time Diagnosis and Repair of Faults of Robot Control Software. In: RoboCup 2005: Robot Soccer World Cup IX, Springer (2006) 13–23

    Google Scholar 

  11. Grosclaude, I.: Model-based monitoring of component-based software systems. In: International Workshop on Priciples of Diagnosis, Carcassonne, France (2004)

    Google Scholar 

  12. Kirchner, D., Niemczyk, S., Geihs, K.: RoSHA : A Multi-Robot Self-Healing Architecture. In: RoboCup2013: Robot World Cup XVII, Eindhoven, Springer (2013)

    Google Scholar 

  13. Avizienis, A., Laprie, J.: Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing 1(1) (2004)

    Google Scholar 

  14. Kirchner, D., Geihs, K.: Qualitative Bayesian Failure Diagnosis for Robot Systems. In: Submitted to International Conference on Intelligent Robots and Systems, Chicago, IEEE (2014)

    Google Scholar 

  15. Kirchner, D., Saur, D.: Reliable Robotics - Diagnostics++. In: ROS Developer Conference, Stuttgart (2013)

    Google Scholar 

  16. Haque, T., Geihs, K., Kirchner, D., Opfer, S., Saur, D., Witsch, A.: Team description: Carpe noctem 2013. Technical report (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Kirchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kirchner, D., Geihs, K. (2016). Adaptive Model-Based Monitoring for Robots. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics