Skip to main content

Spinal Reflex Conditioning: Mechanisms and Implications

  • Conference paper
  • 2141 Accesses

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 7))

Abstract

Operant conditioning protocols that induce and maintain specific descending influence over spinal cord reflex pathways can gradually change these reflexes. These protocols create a complex hierarchy of plasticity in which plasticity in the brain induces and maintains the plasticity in the spinal cord that directly underlies reflex change. Thus, they provide a powerful model for studying the substrates of motor learning. In addition, because spinal cord reflexes contribute to behaviors such as locomotion, and because abnormalities in these reflexes often contribute to the motor impairments caused by spinal cord injury and other disorders, operant conditioning protocols provide a promising new therapeutic approach to improving recovery. In both animals and humans with incomplete spinal cord injuries, an appropriately selected operant conditioning protocol can restore more normal locomotion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carp, J.S., Wolpaw, J.R.: Motoneuron plasticity underlying operantly conditioned decrease in primate H-reflex. Journal of Neurophysiology 72, 431–442 (1994)

    Google Scholar 

  • Carp, J.S., Chen, X.Y., Sheikh, H., Wolpaw, J.R.: Operant conditioning of rat H-reflex affects motoneuron axonal conduction velocity. Exp. Brain Res. 136, 269–273 (2001a)

    Article  Google Scholar 

  • Carp, J.S., Chen, X.Y., Sheikh, H., Wolpaw, J.R.: Motor unit properties after operant conditioning of rat H-reflex. Exp. Brain Res. 140, 382–386 (2001b)

    Article  Google Scholar 

  • Chen, X., Chen, Y., Chen, L., Liu, R., Wang, Y., Yao, L.H., Wolpaw, J.R.: Inferior olive ablation prevents acquisition and long-term maintenance of soleus H-reflex down-conditioning in rats. In: Society for Neuroscience 42nd Annual Meeting, Program No. 475.417, New Orleans, LA (2012)

    Google Scholar 

  • Chen, X.Y., Wolpaw, J.R.: Probable corticospinal tract control of spinal cord plasticity in the rat. J. Neurophysiol. 87, 645–652 (2002)

    Google Scholar 

  • Chen, X.Y., Wolpaw, J.R.: Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats. Learn Mem. 12, 248–254 (2005)

    Article  Google Scholar 

  • Chen, X.Y., Carp, J.S., Chen, L., Wolpaw, J.R.: Corticospinal tract transection prevents operantly conditioned H-reflex increase in rats. Exp. Brain Res. 144, 88–94 (2002)

    Article  Google Scholar 

  • Chen, X.Y., Carp, J.S., Chen, L., Wolpaw, J.R.: Sensorimotor cortex ablation prevents H-reflex up-conditioning and causes a paradoxical response to down-conditioning in rats. J. Neurophysiol. 96, 119–127 (2006a)

    Article  Google Scholar 

  • Chen, X.Y., Chen, Y., Chen, L., Tennissen, A.M., Wolpaw, J.R.: Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats. J. Neurotrauma. 23, 1705–1712 (2006b)

    Article  Google Scholar 

  • Chen, Y., Chen, X.Y., Jakeman, L.B., Chen, L., Stokes, B.T., Wolpaw, J.R.: Operant conditioning of H-reflex can correct a locomotor abnormality after spinal cord injury in rats. J. Neurosci. 26, 12537–12543 (2006c)

    Article  Google Scholar 

  • Feng-Chen, K.C., Wolpaw, J.R.: Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons. Proc. Natl. Acad. Sci. USA 93, 9206–9211 (1996)

    Article  Google Scholar 

  • Halter, J.A., Carp, J.S., Wolpaw, J.R.: Operantly conditioned motoneuron plasticity: possible role of sodium channels. J. Neurophysiol. 73, 867–871 (1995)

    Google Scholar 

  • Nielsen, J., Crone, C., Hultborn, H.: H-reflexes are smaller in dancers from the Royal Danish Ballet than in well-trained athletes. Eur. J. Appl. Physiol. 66, 116–121 (1993)

    Article  Google Scholar 

  • Pillai, S., Wang, Y., Wolpaw, J.R., Chen, X.Y.: Effects of H-reflex up-conditioning on GABAergic terminals on rat soleus motoneurons. Eur. J. Neurosci. 28, 668–674 (2008)

    Article  Google Scholar 

  • Thompson, A.K., Pomerantz, F.R., Wolpaw, J.R.: Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J. Neurosci. 33, 2365–2375 (2013a)

    Article  Google Scholar 

  • Thompson, A.K., Wolpaw, J.R.: The simplest motor skill: mechanisms and applications of reflex operant conditioning. Exercise and Sport Sciences Reviews (in press, 2014a)

    Google Scholar 

  • Thompson, A.K., Wolpaw, J.R.: Restoring walking after SCI: operant conditioning of spinal reflexes can help. The Neuroscientist (in press, 2014b)

    Google Scholar 

  • Wang, Y., Pillai, S., Wolpaw, J.R., Chen, X.Y.: Motor learning changes GABAergic terminals on spinal motoneurons in normal rats. Eur. J. Neurosci. 23, 141–150 (2006)

    Article  MATH  Google Scholar 

  • Wang, Y., Chen, Y., Chen, L., Wolpaw, J.R., Chen, X.: Effects of soleus H-reflex conditioning on the motoneuron GABAA receptor, G-protein-activated inwardly-rectifying potassium channel 3.2, and voltage-gated sodium channels. In: Society for Neuroscience 43rd Annual Meeting, Program No. 645.619, San Diego, CA (2013)

    Google Scholar 

  • Wolpaw, J.R.: The complex structure of a simple memory. Trends Neurosci. 20, 588–594 (1997)

    Article  Google Scholar 

  • Wolpaw, J.R.: What can the spinal cord teach us about learning and memory? Neuroscientist 16, 532–549 (2010)

    Article  Google Scholar 

  • Wolpaw, J.R., O’Keefe, J.A.: Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process. J. Neurosci. 4, 2718–2724 (1984)

    Google Scholar 

  • Wolpaw, J.R., Tennissen, A.M.: Activity-dependent spinal cord plasticity in health and disease. Annual Review of Neuroscience 24, 807–843 (2001)

    Article  Google Scholar 

  • Wolpaw, J.R., Chen, X.Y.: Operant conditioning of rat H-reflex: effects on mean latency and duration. Exp. Brain Res. 136, 274–279 (2001)

    Article  Google Scholar 

  • Wolpaw, J.R., Chen, X.Y.: The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem. 13, 208–215 (2006)

    Article  Google Scholar 

  • Wolpaw, J.R., Lee, C.L.: Memory traces in primate spinal cord produced by operant conditioning of H-reflex. J. Neurophysiol. 61, 563–572 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wolpaw, J.R. (2014). Spinal Reflex Conditioning: Mechanisms and Implications. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics