Skip to main content

Tunneling of a Many-Boson System to Open Space Without a Threshold

  • Chapter
  • First Online:
Tunneling Dynamics in Open Ultracold Bosonic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 450 Accesses

Abstract

The scope of the present chapter is to analyze the many-body tunneling to open space process with numerically exact many-body computations done with the MCTDHB method. The tunneling process lies at the very heart of quantum mechanics and has been a matter of discussion since the advent of quantum mechanics. In contrast to the tunneling of single particles, nearly nothing is known about the many-body tunneling process. Here, the time-dependent many-boson Schrödinger equation of the process is solved for \(N=2,4,\) and \(N=101\) bosons numerically-exactly with the MCTDHB. It turns out that initially parabolically trapped and coherent samples gradually develop fragmentation in the process: the ejected particles lose their coherence both among each other and with the source. The whole process can be assembled by single particle emission processes which emerge from systems of different particle number. In each of these processes, an emitted boson converts the chemical potential of systems with decreasing particle number to a specific kinetic energy which manifests in the occurence of peaks in the momentum distributions. The prospects of the stystem for the use as a quantum simulator for ionization processes or as an atom laser are discussed.

There is a theory which states that if ever anyone discovers exactly what the Universe is for and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable. There is another theory which states that this has already happened.

Douglas Adams, The Restaurant at the End of the Universe

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.U.J. Lode, A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 109, 13521 (2012)

    Article  ADS  Google Scholar 

  2. G. Gamow, Zur Quantentheorie Des Atomkernes. Z. F. Phys. 51(3–4), 204–212 (1928)

    Google Scholar 

  3. B.S. Bhandari, Resonant tunneling and the bimodal symmetric fission of \(^{{258}}\)Fm. Phys. Rev. Lett. 66, 1034–1037 (1991)

    Google Scholar 

  4. N. Takigawa, A.B. Balantekin, Quantum tunneling in nuclear fusion. Rev. Mod. Phys. 70, 77–100 (1998)

    Google Scholar 

  5. J. Keller, J. Weiner, Direct measurement of the potential-barrier height in the \(B^1\Pi _u\) state of the sodium dimer. Phys. Rev. A 29, 2943–2945 (1984)

    Google Scholar 

  6. M. Vatasescu et al., Multichannel tunneling in the Cs\(_2\)0\(_g^-\) photoassociation spectrum. Phys. Rev. A 61, 044701 (2000)

    Google Scholar 

  7. R.W. Gurney, E.U. Condon, Quantum Mechanics and Radioactive Disintegration. Nature 122, 439 (1928)

    Google Scholar 

  8. R.W. Gurney, E.U. Condon, Quantum Mechanics and Radioactive Disintegration. Phys. Rev. 33, 127–140 (1929)

    Google Scholar 

  9. H.A. Kramers, Wellenmechanik und halbzählige Quantisierung. Zeitschr. F. Physik A 39 (10–11), 828–840 (1926)

    Google Scholar 

  10. M. Razavy, Quantum Theory of Tunneling (World Scientific Publishing Co., Singapore, 2003)

    Book  MATH  Google Scholar 

  11. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation. (Oxford University Press, Oxford, 2003)

    Google Scholar 

  12. E.H. Lieb, W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution and the Ground State. Phys. Rev. 130, 1605 (1963)

    Google Scholar 

  13. E.H. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum. Phys. Rev. 130, 1616 (1963)

    Google Scholar 

  14. M. Gaudin, Boundary Energy of a Bose Gas in One Dimension. Phys. Rev. A 4, 386–394 (1971)

    Google Scholar 

  15. A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Correlations and Counting Statistics of an Atom Laser. Phys. Rev. Lett. 95, 090404 (2005)

    Google Scholar 

  16. I. Bloch, T.W. Hänsch, T. Esslinger, Atom Laser with a cw Output Coupler. Phys. Rev. Lett. 82, 3008 (1999)

    Google Scholar 

  17. A. Del Campo, I. Lizuain, M. Pons, J.G. Muga, M. Moshinsky, Atom laser dynamics in a tight-waveguide. J. Phys. Conf. Ser. 99, 012003 (2008)

    Google Scholar 

  18. M. Köhl, Th. Busch, K. Mølmer, T.W. Hänsch, T. Esslinger, Observing the profile of an atom laser beam. Phys. Rev. A 72, 063618 (2005)

    Google Scholar 

  19. W. Ketterle, Nobel lecture: When atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Google Scholar 

  20. W. Ketterle and H.-J. Miesner, Coherence properties of Bose–Einstein condensates and atom lasers. Phys. Rev. A 56, 3291 (1997)

    Google Scholar 

  21. T. Gericke, P. Würtz, D. Reitz, T. Langen, H. Ott, High-resolution scanning electron microscopy of an ultracold quantum gas. Nat. Phys. 4, 949–953 (2008)

    Article  Google Scholar 

  22. F. Serwane et al., Deterministic Preparation of a Tunable Few-Fermion System. Science 332(6027), 336–338 (2011)

    Google Scholar 

  23. D. Heine et al., A single-atom detector integrated on an atom chip: fabrication, characterization and application. New J. Phys. 12, 095005 (2010)

    Article  ADS  Google Scholar 

  24. L.S. Cederbaum, A.I. Streltsov, Best mean-field for condensates. Phys. Lett. A 318, 564–569 (2003)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel U. J. Lode .

6.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lode, A.U.J. (2015). Tunneling of a Many-Boson System to Open Space Without a Threshold. In: Tunneling Dynamics in Open Ultracold Bosonic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07085-8_6

Download citation

Publish with us

Policies and ethics