Skip to main content

Theoretical Concepts and Numerical Methods

  • Chapter
  • First Online:
Tunneling Dynamics in Open Ultracold Bosonic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 477 Accesses

Abstract

The scope of this chapter is to equip the reader with the necessary conventions and tools from the second quantization formalism. Quantities of interest like reduced density matrices and normalized correlation functions are defined. The theoretical framework of the methods used throughout the remainder of the book is outlined. In detail, the derivation of the time-dependent Gross–Pitaevskii equation, the time-dependent multi-orbital mean-field equations of motion as well as the multiconfigurational time-dependent Hartree method for bosons are given. Furthermore, the time-evolved block decimation for the Bose–Hubbard Hamiltonian and the discrete non-linear Schrödinger equation are introduced, as they are the subject of a later comparison.

Being ignorant is not so much a shame, as being unwilling to learn.

Benjamin Franklin

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For didactical reasons, the time-dependencies are omitted in various places in this section.

References

  1. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases. (Cambridge University Press, 2008)

    Google Scholar 

  2. F. Schwabl, Quantenmechanik für Fortgeschrittene (Springer, Heidelberg, 2000)

    Book  MATH  Google Scholar 

  3. M. Olshanii, Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys. Rev. Lett. 81, 938 (1998)

    Google Scholar 

  4. M. Olshanii, L. Pricoupenko, Rigorous Approach to the Problem of Ultraviolet Divergencies in Dilute Bose Gases. Phys. Rev. Lett. 88, 010402 (2002)

    Google Scholar 

  5. P.A.M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation. Proc. R. Soc. Lond. A 114, 243–265 (1927)

    Google Scholar 

  6. S. Scheel, S.Y. Buhmann, Macroscopic quantum electrodynamics - concepts and applications. Acta Physica Slovaca 58, 675–809 (2008)

    ADS  Google Scholar 

  7. S. Scheel, Permanents in linear optical networks. arXiv:quant-ph, 0406127v1 (2004)

    Google Scholar 

  8. A. Einstein, Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad. Wiss. Bericht 22, 261 (1924)

    Google Scholar 

  9. A. Einstein, Quantentheorie des einatomigen idealen Gases. II. Sitzungsber. Preuss. Akad. Wiss. Bericht 1, 3 (1925)

    Google Scholar 

  10. O. Penrose, L. Onsager, Bose–Einstein Condensation and Liquid Helium. Phys. Rev. 104, 576–584 (1956)

    Google Scholar 

  11. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Exact Quantum Dynamics of a Bosonic Josephson Junction. Phys. Rev. Lett. 103, 220601 (2009)

    Google Scholar 

  12. L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Fragmented Metastable States Exist in an Attractive Bose–Einstein Condensate for Atom Numbers Well Above the Critical Number of the Gross–Pitaevskii Theory. Phys. Rev. Lett. 100, 040402 (2008)

    Google Scholar 

  13. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of Excited States in the Splitting of a Trapped Interacting Bose–Einstein Condensate by a Time-Dependent Barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Google Scholar 

  14. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Zoo of Quantum Phases and Excitations of Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 95, 030405 (2005)

    Google Scholar 

  15. O.E. Alon, L.S. Cederbaum, Pathway from Condensation via Fragmentation to Fermionization of Cold Bosonic Systems. Phys. Rev. Lett. 95, 140402 (2005)

    Article  ADS  Google Scholar 

  16. P. Bader, U.R. Fischer, Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap. Phys. Rev. Lett. 103, 060402 (2009)

    Article  ADS  Google Scholar 

  17. R.W. Spekkens, J.E. Sipe, Spatial fragmentation of a Bose–Einstein condensate in a double-well potential. Phys. Rev. A 59, 3868–3877 (1999)

    Google Scholar 

  18. E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Fragmentation of Bose–Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Google Scholar 

  19. C. Weiss, Y. Castin, Creation and Detection of a Mesoscopic Gas in a Nonlocal Quantum Superposition. Phys. Rev. Lett. 102, 010403 (2009)

    Article  ADS  Google Scholar 

  20. U.M. Titulaer, R.J. Glauber, Correlation Functions for Coherent Fields. Phys. Rev. 140, B676 (1965)

    Google Scholar 

  21. R.J. Glauber, The Quantum Theory of Optical Coherence. Phys. Rev. 130, 2529 (1963)

    Google Scholar 

  22. M. Naraschewski, R.J. Glauber, Spatial coherence and density correlations of trapped Bose gases. Phys. Rev. A 59, 4595 (1999)

    Google Scholar 

  23. A.I. Streltsov, K. Sakmann, A.U.J. Lode, O.E. Alon, L.S. Cederbaum, The Multiconfigurational time-dependent Hartree for Bosons package, version 2.3, Heidelberg, (2012), see http://mctdhb.uni-hd.de

  24. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Reduced density matrices and coherence of trapped interacting bosons. Phys. Rev. A, 78, 023615 (2008)

    Google Scholar 

  25. P. Kramer, M. Saraceno, Geometry of the Time-Dependent Variational Principle (Springer, Heidelberg, 1981)

    Book  MATH  Google Scholar 

  26. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, 2003)

    Google Scholar 

  27. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Time-dependent multiorbital mean-field for fragmented Bose–Einstein condensates. Phys. Lett. A 362, 453–459 (2007)

    Google Scholar 

  28. L.S. Cederbaum, A.I. Streltsov, Best mean-field for condensates. Phys. Lett. A 318, 564–569 (2003)

    Article  ADS  MATH  Google Scholar 

  29. L.S. Cederbaum, A.I. Streltsov, Y.B. Band, O.E. Alon, Interferences in the Density of Two Bose–Einstein Condensates Consisting of Identical or Different Atoms. Phys. Rev. Lett. 98, 110405 (2007)

    Google Scholar 

  30. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Many-body theory for systems with particle conversion: Extending the multiconfigurational time-dependent Hartree method. Phys. Rev. A. 79, 022503 (2009)

    Article  ADS  Google Scholar 

  31. O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators. Chem. Phys. 401, 2–14 (2012)

    Article  ADS  Google Scholar 

  32. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

    Article  ADS  Google Scholar 

  33. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Google Scholar 

  34. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold Bosonic Atoms in Optical Lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  ADS  Google Scholar 

  35. G. Vidal, Efficient Simulation of One-Dimensional Quantum Many-Body Systems. Phys. Rev. Lett. 93, 040502 (2004)

    Article  ADS  Google Scholar 

  36. M. Zwolak, G. Vidal, Mixed-State Dynamics in One-Dimensional Quantum Lattice Systems: A Time-Dependent Superoperator Renormalization Algorithm. Phys. Rev. Lett. 93, 207205 (2004)

    Article  ADS  Google Scholar 

  37. M. Hiller, Parametric Bose–Hubbard Hamiltonians: Quantum Dissipation, Irreversibility, and Pumping. Ph.D. thesis, Georg-August-Universität zu Göttingen, 2007

    Google Scholar 

  38. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Quantum dynamics of attractive versus repulsive bosonic josephson junctions: Bose–Hubbard and full-Hamiltonian results. Phys. Rev. A 82, 013620 (2010)

    Google Scholar 

  39. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Optimal time-dependent lattice models for nonequilibrium dynamics. New J. Phys. 13, 043003 (2011)

    Article  ADS  Google Scholar 

  40. A.R. Kolovsky, H.J. Korsch, E.-M. Graefe, Bloch oscillations of Bose–Einstein condensates: Quantum counterpart of dynamical instability. Phys. Rev. A 80, 023617 (2009)

    Google Scholar 

  41. J.A. Glick, L.D. Carr, Macroscopic Quantum Tunneling of Solitons in Bose–Einstein Condensates. ArXiv e-prints, May 2011. ArXiv:1105.5164 (2011)

  42. A.C. Hindmarsh, A. Odepack, A Systematized Collection of ODE Solvers, in Scientific Computing, vol. 1 of IMACS Transactions on Scientific Computation, ed. by R. S. Stepleman (North-Holland, Amsterdam, 1983), pp. 55–64

    Google Scholar 

  43. G.A. Worth, M.H. Beck, A. Jäckle, H.D. Meyer, The MCTDH Package, Version 8.2, (2000). H.D. Meyer, Version 8.3 (2002), Version 8.4 (2007), see http://mctdh.uni-hd.de/

  44. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer New York, 1993)

    Google Scholar 

  45. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General mapping for bosonic and fermionic operators in Fock space. Phys. Rev. A 81, 022124 (2010)

    Article  ADS  Google Scholar 

  46. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra et al., LAPACK Users’ Guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). ISBN 0-89871-447-8

    Google Scholar 

  47. I. Březinová, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, J. Burgdörfer, Wave chaos as signature for depletion of a Bose–Einstein condensate. Phys. Rev. A 86, 013630 (2012)

    Google Scholar 

  48. K. Sakmann, Many-Body Schrödinger Dynamics of Bose–Einstein Condensates. Ph.D. thesis, University of Heidelberg (Springer Theses, Berlin Heidelberg, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel U. J. Lode .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lode, A.U.J. (2015). Theoretical Concepts and Numerical Methods. In: Tunneling Dynamics in Open Ultracold Bosonic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07085-8_2

Download citation

Publish with us

Policies and ethics