Skip to main content

Applications of Ray-Casting in Medical Imaging

  • Conference paper
Information Technologies in Biomedicine, Volume 3

Abstract

The authors present applications of ray casting as segmentation and analysis method for processing of medical imaging data. The first application features ray casting based image segmentation for extraction of a region enclosing heart structures from a series of CT scans. Proposed method yields significant gains in reduction of the data set size, that are of importance in applications such as Transesophageal USG simulations on mobile devices or web platforms.

Another application, utilizes ray casting determining location of characteristic points of left ventricle (LV). The points are used as reference during automatic fusion of ECHO Automated Function Imaging output with a 3D model of LV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowman, D.A., Hodges, L.F.: An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments. In: Proceedings of The 1997 Symposium on Interactive 3D Graphics, I3D 1997, pp. 35–38. ACM, New York (1997)

    Google Scholar 

  2. Myszkowski, K., Okunev, O., Kunii, T.: Fast collision detection between complex solids using rasterizing graphics hardware. The Visual Computer 11(9), 497–511 (1995)

    Article  Google Scholar 

  3. Moltz, J.H., Bornemann, L., Kuhnigk, J.M., Dicken, V., Peitgen, E., Meier, S., Bolte, H., Fabel, M., Bauknecht, H.C., Hittinger, M., et al.: Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans. IEEE Journal of Selected Topics in Signal Processing 3(1), 122–134 (2009)

    Article  Google Scholar 

  4. Bomans, M., Hohne, K.H., Tiede, U., Riemer, M.: 3-D segmentation of MR images of the head for 3-D display. IEEE Transactions on Medical Imaging 9(2), 177–183 (1990)

    Article  Google Scholar 

  5. Dobkin, D.P., Wilks, A.R., Levy, S.V.F., Thurston, W.P.: Contour tracing by piecewise linear approximations. ACM Trans. Graph. 9(4), 389–423 (1990)

    Article  Google Scholar 

  6. Jensen, J.A.: Simulation of advanced ultrasound systems using Field II. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 636–639. IEEE (2004)

    Google Scholar 

  7. Shams, R., Hartley, R.I., Navab, N.: Real-time simulation of medical ultrasound from CT images. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 734–741. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Sun, B., McKenzie, F.: Real-time sonography simulation for medical training. International Journal of Education and Information Technologies 5(3), 328–335 (2011)

    Google Scholar 

  9. Kutter, O., Shams, R., Navab, N.: Visualization and GPU-accelerated simulation of medical ultrasound from CT images. Computer Methods and Programs in Biomedicine 94(3), 250–266 (2009)

    Article  Google Scholar 

  10. Burger, B., Bettinghausen, S., Radle, M., Hesser, J.: Real-time GPU-based ultrasound simulation using deformable mesh models. IEEE Transactions on Medical Imaging 32(3), 609–618 (2013)

    Article  Google Scholar 

  11. Piórkowski, A., Kempny, A.: The Transesophageal Echocardiography simulator based on Computed Tomography images. IEEE Trans. Biomed. Engineering 60(2), 292–299 (2013)

    Article  Google Scholar 

  12. Goksel, O., Salcudean, S.E.: B-mode ultrasound image simulation in deformable 3-D medium. IEEE Transactions on Medical Imaging 28(11), 1657–1669 (2009)

    Article  Google Scholar 

  13. Piórkowski, A., Werewka, J.: A concept of eTraining platform for cardiology learning based on SOA paradigm. In: Maciaszek, L.A., Cuzzocrea, A., Cordeiro, J. (eds.) ICEIS (3), vol. 3, pp. 261–264. SciTePress (2012)

    Google Scholar 

  14. Kunkler, K.: The role of medical simulation: an overview. The International Journal of Medical Robotics and Computer Assisted Surgery 2(3), 203–210 (2006)

    Article  Google Scholar 

  15. Amitai, Z., Small, S.D., Wolpe, P.R.: Patient safety and simulation-based medical education. Medical Teacher 22(5), 489–495 (2000)

    Google Scholar 

  16. Borzęcki, M., Skurski, A., Balcerzak, B., Kamiński, M., Napieralski, A., Kasprzak, J., Lipiec, P.: Computed Tomography image processing for diagnostic and training applications in medicine. Journal of Medical Informatics and Technologies 19, 67–73 (2012)

    Google Scholar 

  17. Clunie, D.A.: DICOM structured reporting. PixelMed Publishing (2000)

    Google Scholar 

  18. Bidgood, W.D., Horii, S.C., Prior, F.W., Van Syckle, D.E.: Understanding and using DICOM, the data interchange standard for biomedical imaging. Journal of the American Medical Informatics Association 4(3), 199–212 (1997)

    Article  Google Scholar 

  19. Gaemperli, O., Schepis, T., Valenta, I., Husmann, L., Scheffel, H., Duerst, V., Eberli, F.R., Luscher, T.F., Alkadhi, H., Kaufmann, P.A.: Cardiac image fusion from stand-alone SPECT and CT: clinical experience. Journal of Nuclear Medicine 48(5), 696–703 (2007)

    Article  Google Scholar 

  20. Gaemperli, O., Bengel, F.M., Kaufmann, P.A.: Cardiac hybrid imaging. European Heart Journal 32(17), 2100–2108 (2011)

    Article  Google Scholar 

  21. Belghiti, H., Brette, S., Lafitte, S., Reant, P., Picard, F., Serri, K., Lafitte, M., Courregelongue, M., Dos Santos, P., Douard, H., et al.: Automated function imaging: a new operator-independent strain method for assessing left ventricular function. Archives of Cardiovascular Diseases 101(3), 163–169 (2008)

    Article  Google Scholar 

  22. Skurski, A., Borzęcki, M., Balcerzak, B., Kamiński, M., Napieralski, A., Kasprzak, J., Lipiec, P.: Image processing methods for diagnostic and simulation applications in cardiology. International Journal of Microelectronics and Computer Science 3(4), 146–151 (2012)

    Google Scholar 

  23. Murta Jr., L., Pazin-Filho, A., Schmidt, A., Almeida-Filho, O., Marin-Neto, J., Maciel, B.: Segmental quantitative analysis of myocardial contrast echocardiography images using a bullseye representation. In: Computers in Cardiology, pp. 177–180. IEEE (2003)

    Google Scholar 

  24. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the Spring Joint Computer Conference, April 18-20, pp. 483–485. ACM (1967)

    Google Scholar 

  25. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. In: ACM SIGARCH Computer Architecture News, vol. 38, pp. 451–460. ACM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Borzęcki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Borzęcki, M., Skurski, A., Kamiński, M., Napieralski, A., Kasprzak, J., Lipiec, P. (2014). Applications of Ray-Casting in Medical Imaging. In: Piętka, E., Kawa, J., Wieclawek, W. (eds) Information Technologies in Biomedicine, Volume 3. Advances in Intelligent Systems and Computing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-06593-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06593-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06592-2

  • Online ISBN: 978-3-319-06593-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics