Skip to main content

Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum

  • Chapter
Handbook for Azospirillum

Abstract

In the face of global changes, plants must adapt to a wide range and often combined biotic and abiotic stresses that seriously impaired plant growth and development. Plants develop complex strategies to deal with water stress conditions, soil fertility losses, soil pollutions, pests, and disease. Emerging evidence suggest the involvement of common hormonal players in plant defense signaling pathways triggered in response to biotic and abiotic stresses. Besides plant strategies, plant growth-promoting rhizobacteria (PGPR), which colonize the root system and establish cooperative interactions with plants can improve their growth and help them to adapt to and cope with multiple stresses including drought, salinity, heavy metal pollutions, and parasites. Accordingly, PGPR supply added values to the plant defense strategies by expressing many relevant functions for modulating the plant hormonal balance, increasing nutrients supply to the plant, improving the functional and physical properties of protective barriers against plant parasites. Among PGPR, Azospirillum strains were long viewed as biofertilizers and less as biocontrol agents. It is becoming evident that Azospirillum is able to protect plants against a myriad of detrimental conditions. This review provides an update of works regarding the ability of Azospirillum strains to alleviate plant stress and brings out the relevant involved plant-beneficial functions. Developing PGPR-based bio-inoculants is a promising strategy to improve the growth and health of crops and develop sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107. doi:10.1016/j.sjbs.2009.10.009

    PubMed Central  PubMed  Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C et al (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73. doi:10.1111/j.1574-6968.2006.00244.x

    CAS  PubMed  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC et al (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876. doi:10.1007/s10529-006-9179-3

    PubMed  Google Scholar 

  • Almario J, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2013) Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Mol Plant Microbe Interact 26:566–574. doi:10.1094/MPMI-11-12-0274-R

    CAS  PubMed  Google Scholar 

  • Almario J, Muller D, Défago G, Moënne-Loccoz Y (2014) Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco. Environ Microbiol 16:1949–1960. doi:10.1111/1462-2920.12459

    PubMed  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442. doi:10.1023/A:1026561029533

    CAS  PubMed  Google Scholar 

  • Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266. doi:10.1111/j.1399-3054.2006.00775.x

    CAS  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887. doi:10.1016/j.plantsci.2007.02.005

    CAS  Google Scholar 

  • Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620. doi:10.1016/S1002-0160(08)60055-7

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. doi:10.1016/j.envexpbot.2005.12.006

    CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. doi:10.1007/s10529-010-0347-0

    CAS  PubMed  Google Scholar 

  • Babalola OO, Akindolire AM (2011) Identification of native rhizobacteria peculiar to selected food crops in Mmabatho municipality of South Africa. Biol Agric Hortic 27:294–309. doi:10.1080/01448765.2011.647798

    Google Scholar 

  • Bacilio M, Rodriguez H, Moreno M et al (2004) Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum. Biol Fertil Soils 40:188–193. doi:10.1007/s00374-004-0757-z

    CAS  Google Scholar 

  • Bais HP, Park S-W, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32. doi:10.1016/j.tplants.2003.11.008

    CAS  PubMed  Google Scholar 

  • Bakanchikova TI, Lobanok EV, Pavlova-Ivanova LK et al (1993) Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Mikrobiologiya 62(Suppl 3):515–523 (Russian Federation)

    Google Scholar 

  • Bakker PAHM, Pieterse CMJ, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243. doi:10.1094/PHYTO-97-2-0239

    PubMed  Google Scholar 

  • Bano Q, Ilyas N, Bano A et al (2013) Effect of Azospirillum inoculation on maize (Zea mays l.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–88. doi:10.1007/s11103-008-9435-0

  • Barton LL, Johnson GV, Miller SO (1986) The effect of Azospirillum brasilense on iron absorption and translocation by sorghum. J Plant Nutr 9:557–565. doi:10.1080/01904168609363466

    Google Scholar 

  • Bashan Y, de-Bashan LE (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68:2637–2643. doi:10.1128/AEM. 68.6.2637-2643.2002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33. doi:10.1007/s11104-013-1956-x

    CAS  Google Scholar 

  • Belimov AA, Kunakova AM, Safronova VI et al (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106. doi:10.1023/B:MICI.0000016377.62060.d3

    CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423. doi:10.1111/j.1469-8137.2008.02657.x

    CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    CAS  PubMed  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470. doi:10.1111/j.1574-6941.2006.00082.x

    CAS  PubMed  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. doi:10.1007/s002039900127

    CAS  PubMed  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744. doi:10.1126/science.1171647

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bouffaud M-L, Poirier M-A, Muller D, Moënne-Loccoz Y (2014) Root microbiome relates to plant host evolution in maize and other Poaceae. Environ Microbiol 16(9):2804–2814. doi:10.1111/1462-2920.12442

    PubMed  Google Scholar 

  • Boyer M, Wisniewski-Dyé F (2009) Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 70:1–19. doi:10.1111/j.1574-6941.2009.00745.x

    CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431. doi:10.1016/j.ibmb.2011.02.006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569. doi:10.1111/nph.12383

    CAS  PubMed  Google Scholar 

  • Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep. doi:10.1038/srep06261

    PubMed Central  PubMed  Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432. doi:10.1007/s00114-002-0347-6

    CAS  PubMed  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    CAS  PubMed  Google Scholar 

  • Chen C, Bélanger RR, Benhamou N, Paulitz TC (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56:13–23. doi:10.1006/pmpp.1999.0243

    CAS  Google Scholar 

  • Chowdhury SP, Nagarajan T, Tripathi R et al (2007) Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense. FEMS Microbiol Lett 267:72–79. doi:10.1111/j.1574-6968.2006.00540.x

    CAS  PubMed  Google Scholar 

  • Chung H, Park M, Madhaiyan M et al (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974. doi:10.1016/j.soilbio.2005.02.025

    CAS  Google Scholar 

  • Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103. doi:10.1007/s10725-007-9232-9

    CAS  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. doi:10.1139/B09-023

    CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M et al (2014) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90. doi:10.1111/ppl.12221

    PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM. 71.9.4951-4959.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions: climate change and beneficial plant-microorganism interactions. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2010.00900.x

    PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Béna G, Borel F, Galland M, Gamet L, Varoquaux F, Touraine B (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 175:178–189. doi:10.1016/j.plantsci.2008.01.020

    CAS  Google Scholar 

  • Contesto C, Milesi S, Mantelin S et al (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470. doi:10.1007/s00425-010-1264-0

    CAS  PubMed  Google Scholar 

  • Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11:159–175. doi:10.1111/j.1462-2920.2008.01750.x

    CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281. doi:10.1139/b03-119

    Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizosphere. In: Barton LL, Abadia J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 169–198

    Google Scholar 

  • de Souza JT, de Boer M, de Waard P et al (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172. doi:10.1128/AEM. 69.12.7161-7172.2003

    PubMed Central  PubMed  Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003a) Effect of 2,4-Diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species.” Phytopathology 93:966–975. doi: 10.1094/PHYTO.2003.93.8.966

  • de Souza JT, de Boer M, de Waard P et al (2003b) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172. doi:10.1128/AEM.69.12.7161-7172.2003

  • De Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180. doi:10.1094/MPMI.2002.15.11.1173

    PubMed  Google Scholar 

  • Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183:318–327

    PubMed Central  CAS  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396. doi:10.1016/j.pbi.2005.05.002

    CAS  PubMed  Google Scholar 

  • Dias-Arieria CR, Marini PM, Fontana LF et al (2012) Effect of Azospirillum brasilense, Stimulate® and potassium phosphite to control Pratylenchus brachyurus in soybean and maize. Nematropica 42:170–175

    Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P et al (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25. doi:10.1016/j.chemosphere.2008.09.079

    CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. doi:10.1111/j.1365-3040.2009.02028.x

    CAS  PubMed  Google Scholar 

  • Djavaheri M (2007) Iron-regulated metabolites of plant growth promoting Pseudomonas fluorescens WCS374: their role in induced systemic resistance. Utrecht University, Utrecht

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi:10.1080/713610853

    CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379. doi:10.1111/j.1744-7348.2010.00439.x

    CAS  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot 99:787–822. doi:10.1093/aob/mcl255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Cesarz S, Koller R et al (2012) Global change belowground: impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Glob Chang Biol 18:435–447. doi:10.1111/j.1365-2486.2011.02555.x

    Google Scholar 

  • Esquivel-Cote R, Ramírez-Gama RM, Tsuzuki-Reyes G et al (2010) Azospirillum lipoferum strain AZm5 containing 1-aminocyclopropane-1-carboxylic acid deaminase improves early growth of tomato seedlings under nitrogen deficiency. Plant Soil 337:65–75. doi:10.1007/s11104-010-0499-7

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi:10.1051/agro:2008021

    Google Scholar 

  • Faure D, Dessaux Y (2007) Quorum sensing as a target for developing control strategies for the plant pathogen Pectobacterium. Eur J Plant Pathol 119:353–365. doi:10.1007/s10658-007-9149-1

    CAS  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragrance J 23:213–226. doi:10.1002/ffj.1875

    CAS  Google Scholar 

  • Frapolli M, Défago G, Moënne-Loccoz Y (2010) Denaturing gradient gel electrophoretic analysis of dominant 2,4-diacetylphloroglucinol biosynthetic phlD alleles in fluorescent Pseudomonas from soils suppressive or conducive to black root rot of tobacco. Soil Biol Biochem 42:649–656. doi:10.1016/j.soilbio.2010.01.005

    CAS  Google Scholar 

  • Friesen ML, Porter SS, Stark SC et al (2011) Microbially mediated plant functional traits. In: Futuyma DJ, Shaffer HB, Simberloff D (eds) Annual review of ecology, evolution, and systematics, vol 42. Annual Reviews, Palo Alto, pp 23–46

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442. doi:10.1016/j.pbi.2006.05.014

    PubMed  Google Scholar 

  • Galland M, Gamet L, Varoquaux F et al (2012) The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci 190:74–81. doi:10.1016/j.plantsci.2012.03.008

    CAS  PubMed  Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343. doi:10.1016/S0167-7799(02)02021-8

    CAS  PubMed  Google Scholar 

  • Glass JT, Cahen GL, Stoner GE (1989) The effect of phosphoric acid concentration on electrocatalysis. J Electrochem Soc 136:656–660. doi:10.1149/1.2096705

    CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. doi:10.1016/j.micres.2013.09.009

    CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68. doi:10.1006/jtbi.1997.0532

    CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: Bakker PAHM, Raaijmakers JM, Bloemberg G et al (eds) New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Google Scholar 

  • Goncalves AFS, Oliveira RGB (1998) Cyanide production by Brazilian strains of Azospirillum. Rev Microbiol 29:36–39

    CAS  Google Scholar 

  • Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375:205–214. doi:10.1007/s11104-013-1952-1

    CAS  Google Scholar 

  • Gupta S, Arora DK, Srivastava AK (1995) Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol Biochem 27:1051–1058. doi:10.1016/0038-0717(95)00011-3

    CAS  Google Scholar 

  • Gutiérrez-Mañero FJ, Ramos-Solano B, Probanza A et al (2001) The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211. doi:10.1034/j.1399-3054.2001.1110211.x

    Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 133–143

    Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    CAS  PubMed  Google Scholar 

  • Haichar F e Z, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80. doi:10.1016/j.soilbio.2014.06.017

    CAS  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271. doi:10.1104/pp. 110.161752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257. doi:10.1007/s11104-008-9814-y

    Google Scholar 

  • Hassouna MG, El‐Saedy MAM, Saleh HMA (1998) Biocontrol of soil‐borne plant pathogens attacking cucumber (Cucumis sativus) by Rhizobacteria in a semiarid environment. Arid Soil Res Rehabil 12:345–357. doi:10.1080/15324989809381523

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi:10.1007/s13213-010-0117-1

    Google Scholar 

  • Helman Y, Chernin L (2014) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol. doi:10.1111/mpp.12180

    PubMed  Google Scholar 

  • Hiltner L (1904) Über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache. Arbeiten der deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320. doi:10.1006/pmpp.1995.1024

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux J-P (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858. doi:10.1094/MPMI.2003.16.10.851

    CAS  PubMed  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 881

    Google Scholar 

  • Jalili F, Khavazi K, Pazira E et al (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674. doi:10.1016/j.jplph.2008.08.004

    CAS  PubMed  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090. doi:10.1128/AEM. 00557-06

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441. doi:10.1146/annurev.phyto.38.1.423

    CAS  PubMed  Google Scholar 

  • Kim HJ, Choi HS, Yang SY et al (2014) Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61: chitinase and cyclic lipopeptide in biocontrol. Mol Plant Pathol 15:122–132. doi:10.1111/mpp.12070

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886. doi:10.1038/286885a0

    CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi:10.1094/PHYTO.2004.94.11.1259

    CAS  PubMed  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    CAS  Google Scholar 

  • Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci. doi:10.3389/fpls.2013.00287

    PubMed Central  PubMed  Google Scholar 

  • Kupferschmied P, Péchy-Tarr M, Imperiali N et al (2014) Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens. PLoS Pathog 10:e1003964. doi:10.1371/journal.ppat.1003964

    PubMed Central  PubMed  Google Scholar 

  • Kwak Y-S, Han S, Thomashow LS et al (2011) Saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by Pseudomonas fluorescens. Appl Environ Microbiol 77:1770–1776. doi:10.1128/AEM. 02151-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218

    PubMed Central  PubMed  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328. doi:10.1016/j.pbi.2004.03.005

    CAS  PubMed  Google Scholar 

  • Levy E, Eyal Z, Chet I, Hochman A (1992) Resistance mechanisms of Septoria tritici to antifungal products of Pseudomonas. Physiol Mol Plant Pathol 40:163–171. doi:10.1016/0885-5765(92)90057-3

    CAS  Google Scholar 

  • Li J, Brader G, Kariola T, Tapio Palva E (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491. doi:10.1111/j.1365-313X.2006.02712.x

    CAS  PubMed  Google Scholar 

  • Lièvremont D, Bertin PN, Lett M-C (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237. doi:10.1016/j.biochi.2009.06.016

    PubMed  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE et al (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695. doi:10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V

    CAS  Google Scholar 

  • López-Guerrero MG, Ormeño-Orrillo E, Rosenblueth M, Martínez-Romero E (2013) Buffet hypothesis for microbial nutrition at the rhizosphere. Front Plant Sci 4:188. doi:10.3389/fpls.2013.00188

    PubMed Central  PubMed  Google Scholar 

  • Lovisolo C, Hartung W, Schubert A (2002) Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines. Funct Plant Biol 29:1349–1356

    CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. doi:10.1146/annurev.micro.62.081307.162918

    CAS  PubMed  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345. doi:10.1134/S0003683811040090

    CAS  Google Scholar 

  • Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda MC, Peña-Cabriales JJ, Sakuda S, Valencia-Cantero E, Santoyo G (2014) Potential use and mode of action of the new strain Bacillus Thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis Cinerea. Biocontrol Sci Technol 24:1349–1362. doi:10.1080/09583157.2014.940846

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61. doi:10.1146/annurev.arplant.54.031902.135035

    CAS  PubMed  Google Scholar 

  • Marulanda A, Azcón R, Chaumont F et al (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543. doi:10.1007/s00425-010-1196-8

    CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue ii. Inhibition of fungal growth by combinations of chitinase and β-1,3-Glucanase. Plant Physiol 88:936–942. doi:10.1104/pp. 88.3.936

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232. doi:10.1007/BF01876237

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572. doi:10.1016/j.plaphy.2004.05.009

    CAS  PubMed  Google Scholar 

  • Mazzola M, Fujimoto DK, Thomashow LS, Cook RJ (1995) Variation in sensitivity of Gaeumannomyces Graminis to antibiotics produced by fluorescent Pseudomonas spp. and effect on biological control of take-all of wheat. Appl Environ Microbiol 61:2554–2559

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant-beneficial, plant-pathogenic and human-pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. doi:10.1111/1574-6976.12028

    CAS  PubMed  Google Scholar 

  • Meyer SL, Halbrendt JM, Carta LK et al (2009) Toxicity of 2, 4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer JB, Frapolli M, Keel C, Maurhofer M (2011) Pyrroloquinoline quinone biosynthesis gene pqqC, a novel molecular marker for studying the phylogeny and diversity of phosphate-solubilizing pseudomonads. Appl Environ Microbiol 77:7345–7354. doi:10.1128/AEM. 05434-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Meziane H, Van Der Sluis I, Van Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. doi:10.1111/j.1364-3703.2005.00276.x

    PubMed  Google Scholar 

  • Mishra G, Zhang W, Deng F et al (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266. doi:10.1126/science.1123769

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009

    CAS  PubMed  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Effects of drought stress on soluble proteins in two maize varieties. Turkish J Biol 32:23–30

    CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701. doi:10.1080/17429145.2014.902125

    Google Scholar 

  • Neill SJ, Desikan R, Clarke A et al (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247. doi:10.1093/jexbot/53.372.1237

    CAS  PubMed  Google Scholar 

  • Omar MNA, Osman MEH, Kasim WA, El-Daim IAA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Athar HR (eds) Salinity and Water Stress. Springer, Dordrecht, pp 133–147

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacilus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • Ongena M, Daayf F, Jacques P et al (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530. doi:10.1046/j.1365-3059.2000.00468.x

    CAS  Google Scholar 

  • Pal SS (1998) Interactions of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 198:169–177. doi:10.1023/A:1004318814385

    CAS  Google Scholar 

  • Park KS, Kloepper JW (2000) Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol Control 18:2–9. doi:10.1006/bcon.2000.0815

    CAS  Google Scholar 

  • Péchy-Tarr M, Bruck DJ, Maurhofer M et al (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386. doi:10.1111/j.1462-2920.2008.01662.x

    PubMed  Google Scholar 

  • Péchy-Tarr M, Borel N, Kupferschmied P et al (2013) Control and host-dependent activation of insect toxin expression in a root-associated biocontrol pseudomonad. Environ Microbiol 15:736–750. doi:10.1111/1462-2920.12050

    PubMed  Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2014) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 1–16. doi: 10.1007/s13762-014-0614-z

  • Pereyra MA, García P, Colabelli MN et al (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97. doi:10.1016/j.apsoil.2011.11.007

    Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular. Plant Cell Environ 26:189–199. doi:10.1046/j.1365-3040.2003.00956.x

    CAS  Google Scholar 

  • Pieterse CM, van Wees SC, Hoffland E et al (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237. doi:10.1105/tpc.8.8.1225

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC (2002) Signalling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol 4:535–544. doi:10.1055/s-2002-35441

    CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi:10.1146/annurev-phyto-082712-102340

    CAS  PubMed  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF et al (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other Proteobacteria. FEMS Microbiol Ecol 65:202–219. doi:10.1111/j.1574-6941.2008.00474.x

    CAS  PubMed  Google Scholar 

  • Pulsawat W, Leksawasdi N, Rogers PL, Foster LJR (2003) Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli. Biotechnol Lett 25:1267–1270. doi:10.1023/A:1025083116343

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710. doi:10.1094/MPMI-19-0699

    CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T et al (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11. doi:10.1016/S0261-2194(00)00056-9

    CAS  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol 18:1918–1927. doi:10.1111/j.1365-2486.2012.02639.x

    Google Scholar 

  • Ramirez-Puebla ST, Servin-Garciduenas LE, Jimenez-Marin B et al (2013) Gut and root microbiota commonalities. Appl Environ Microbiol 79:2–9. doi:10.1128/AEM. 02553-12

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos Solano B, Barriuso Maicas J, Pereyra de la Iglesia MT et al (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection, and biotic elicitors. Phytopathology 98:451–457. doi:10.1094/PHYTO-98-4-0451

    CAS  PubMed  Google Scholar 

  • Reetha AK, Pavani SL, Mohan S (2014) Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. Int J Curr Microbiol Appl Sci 3:172–178

    Google Scholar 

  • Reichman SM (2014) Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur J Soil Biol 63:7–13. doi:10.1016/j.ejsobi.2014.04.001

    CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518. doi:10.1105/tpc.12.4.507

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi:10.1007/s11104-009-9895-2

    CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM et al (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi:10.1007/s11104-007-9476-1

    CAS  Google Scholar 

  • Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Saínz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136. doi:10.1111/j.1574-6968.2007.00761.x

    PubMed  Google Scholar 

  • Roelfsema MRG, Levchenko V, Hedrich R (2004) ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. Plant J 37:578–588

    CAS  PubMed  Google Scholar 

  • Romero AM, Correa OS, Moccia S, Rivas JG (2003) Effect of Azospirillum-mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. doi:10.1046/j.1365-2672.2003.02053.x

    CAS  PubMed  Google Scholar 

  • Romero AM, Vega D, Correa OS (2014) Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl Soil Ecol 82:38–43. doi:10.1016/j.apsoil.2014.05.010

    Google Scholar 

  • Rouch DA, Lee BT, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14:132–141. doi:10.1007/BF01569895

    CAS  PubMed  Google Scholar 

  • Ruffner B, Péchy-Tarr M, Ryffel F et al (2013) Oral insecticidal activity of plant-associated pseudomonads. Environ Microbiol 15:751–763. doi:10.1111/j.1462-2920.2012.02884.x

    CAS  PubMed  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y et al (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037. doi:10.1016/j.jplph.2010.12.019

    PubMed  Google Scholar 

  • Russo A, Vettori L, Felici C et al (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi:10.1016/j.jbiotec.2008.01.020

    CAS  PubMed  Google Scholar 

  • Ryall B, Lee X, Zlosnik JE et al (2008) Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions. BMC Microbiol 8:108

    PubMed Central  PubMed  Google Scholar 

  • Ryu CM, Murphy JF, Mysore KS, Kloepper JW (2004) Plant growth-promoting rhizobacterial systematically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392. doi:10.1111/j.1365-313X.2004.02142.x

    CAS  PubMed  Google Scholar 

  • Sankari JUS, Dinakar S, Sekar C (2011) Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var. ASD-19). J Phytol 3:16–19

    Google Scholar 

  • Schenk PM, Kazan K, Wilson I et al (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660. doi:10.1073/pnas.97.21.11655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302. doi:10.1016/j.pbi.2007.04.014

    CAS  PubMed  Google Scholar 

  • Shah S, Karkhanis V, Desai DA (1992) Isolation and characterization of siderophore, with antimicrobial activity, from Azospirillum lipoferum M. Curr Microbiol 25:347–351. doi:10.1007/BF01577233

    CAS  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R et al (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    CAS  PubMed  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi:10.1128/AEM. 71.9.5646-5649.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Somers E, Ptacek D, Gysegom P et al (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810. doi:10.1128/AEM. 71.4.1803-1810.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185. doi:10.1094/Phyto-76-181

    Google Scholar 

  • Sudhakar P, Chattopadhyay GN, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Google Scholar 

  • Tapia-Hernández A, Ma M-E, C-M J (1989) Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios 64:73–83

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    PubMed Central  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959. doi:10.1094/MPMI.1999.12.11.951

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403. doi:10.1016/j.pbi.2005.05.014

    CAS  PubMed  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286. doi:10.1007/s00203-010-0672-7

    CAS  PubMed  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2012) Protection of strawberry plants (Fragaria ananassa Duch.) against anthracnose disease induced by Azospirillum brasilense. Plant Soil 356:279–290. doi:10.1007/s11104-011-0916-6

    CAS  Google Scholar 

  • Tripathi RK, Gottlieb D (1969) Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bacteriol 100:310–318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237. doi:10.1007/s00284-004-4459-4

    CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59:489–496. doi:10.1007/s00284-009-9464-1

    CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L et al (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. doi:10.3389/fpls.2013.00356

    PubMed Central  PubMed  Google Scholar 

  • Vachon V, Laprade R, Schwartz J-L (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12. doi:10.1016/j.jip.2012.05.001

    CAS  PubMed  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    PubMed  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483. doi:10.1146/annurev.phyto.36.1.453

    PubMed  Google Scholar 

  • Van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191. doi:10.1016/j.tplants.2006.02.005

    PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81:728–734

    Google Scholar 

  • van Peer R, Schippers B (1992) Lipopolysaccharides of Plant-Growth Promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherlands J Plant Pathol 98:129–139. doi:10.1007/BF01996325

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A et al (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724. doi:10.1094/MPMI.1997.10.6.716

    PubMed  Google Scholar 

  • Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14:240–245. doi:10.1016/j.pbi.2011.04.006

    CAS  PubMed  Google Scholar 

  • Vivas A, Marulanda A, Ruiz-Lozano JM et al (2003) Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza 13:249–256. doi:10.1007/s00572-003-0223-z

    PubMed  Google Scholar 

  • Vleesschauwer DD, Djavaheri M, Bakker PAHM, Höfte M (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148:1996–2012. doi:10.1104/pp. 108.127878

    PubMed Central  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed Central  CAS  PubMed  Google Scholar 

  • Volfson V, Fibach-Paldi S, Paulucci NS et al (2013) Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biol Biochem 67:255–262. doi:10.1016/j.soilbio.2013.09.008

    CAS  Google Scholar 

  • Wang YQ, Ohara Y, Nakayashiki H et al (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant Microbe Interact 18:385–396. doi:10.1094/mpmi-18-0385

    CAS  PubMed  Google Scholar 

  • Wang C-J, Yang W, Wang C et al (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting Rhizobacterium strains. PLoS One. doi:10.1371/journal.pone.0052565

    Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455. doi:10.1016/j.pbi.2004.04.002

    CAS  PubMed  Google Scholar 

  • Westgate ME, Boyer JS (1985) Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164:540–549. doi:10.1007/BF00395973

    CAS  PubMed  Google Scholar 

  • Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G et al (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430. doi:10.1371/journal.pgen.1002430

    PubMed Central  PubMed  Google Scholar 

  • Wu K-M, Lu Y-H, Feng H-Q et al (2008) Suppression of cotton bollworm in multiple crops in china in areas with bt toxin-containing cotton. Science 321:1676–1678. doi:10.1126/science.1160550

    CAS  PubMed  Google Scholar 

  • Xue Q-Y, Chen Y, Li S-M, Chen L-F, Ding G-C, Guo D-W, Guo J-H (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biol Control 48:252–258. doi:10.1016/j.biocontrol.2008.11.004

    Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004

    CAS  PubMed  Google Scholar 

  • Yang M-M, Wen S-S, Mavrodi DV, Mavrodi OV, von Wettstein D, Thomashow LS, Guo J-H, Weller DM (2014) Biological control of wheat root diseases by the CLP-producing strain Pseudomonas Fluorescens HC1–07. Phytopathology 104:248–256. doi:10.1094/PHYTO-05-13-0142-R

    CAS  PubMed  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S et al (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    CAS  PubMed  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21. doi:10.1016/S1161-0301(02)00090-4

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997. doi:10.1016/j.chemosphere.2005.12.057

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Prigent-Combaret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vacheron, J., Renoud, S., Muller, D., Babalola, O.O., Prigent-Combaret, C. (2015). Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum . In: Cassán, F., Okon, Y., Creus, C. (eds) Handbook for Azospirillum. Springer, Cham. https://doi.org/10.1007/978-3-319-06542-7_19

Download citation

Publish with us

Policies and ethics