Skip to main content

Swarm Intelligence in Pulp and Paper Process Optimization

  • Chapter
  • First Online:

Abstract

We have learned much by studying the behavior of groups, or swarms of biological organisms. The intriguing aspect of such swarms is the fact that they exhibit complex collective behavior despite the simplicity of the individuals that make up the swarm. Models of these systems have been used successfully to solve difficult and complex real world optimization problems. This chapter focuses on the model inspired by the intelligent foraging behavior of honey bee swarm, proposed by Karaboga in 2005 and employed to solve optimization problems arising in pulp and paper industry. Pulp and paper industry comprises of a large number of processes, namely, economic optimization of a Kraft pulping or cooking problem, optimal boiler load allocation, maximizing the production rate, trim loss optimization, and optimization of supply chain system where optimization can be applied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9), 1769–1797 (2000)

    Article  Google Scholar 

  2. Ahmed, H., Glasgow, J.: Swarm intelligence: concepts, models and applications. Technical Report 2012-585. School of Computing Queen’s University, Kingston (2012)

    Google Scholar 

  3. Akay, B., Karaboga., D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192(0), 120–142 (2012)

    Google Scholar 

  4. Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)

    Article  Google Scholar 

  5. Blum, C., Merkle, D. (eds.): Swarm Intelligence: Introduction and Applications. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  7. Carlsson, D., D’Amours S., Martel, A., Rönnqvist, M.: Supply chain management in the pulp and paper industry. Working Paper DT-2006-AM-3, (CIRRELT), Université Laval, Québec (2006)

    Google Scholar 

  8. Carroll, C.: An operations research approach to the economic optimization of a kraft pulping process. Ph.D. thesis, The Institute of Paper Chemistry, Appleton (1959)

    Google Scholar 

  9. Chittka, L.: Dances as windows into insect perception. PLoS Biol 2(7), e216 (2004)

    Article  Google Scholar 

  10. Chung, S.F.: Mathematical model and optimization of drying process for a through-circulation dryer. Can. J. Chem. Eng. 50(5), 657–662 (1972)

    Google Scholar 

  11. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  12. Deep, K., Chauhan, P., Bansal, J.: Solving nonconvex trim loss problem using an efficient hybrid particle swarm optimization. In: World Congress on Nature Biologically Inspired Computing, 2009 (NaBIC 2009), pp. 1608–1611 (2009)

    Google Scholar 

  13. Deep, K., Chauhan, P., Pant, M.: New hybrid discrete pso for solving non convex trim loss problem. Int. J. Appl. Evol. Comput. 3(2), 19–41 (2012)

    Article  Google Scholar 

  14. dos Santos Coelho, L., Alotto, P.: Gaussian artificial bee colony algorithm approach applied to loney’s solenoid benchmark problem. IEEE Trans. Magnetics 47(5), 1326–1329 (2011)

    Article  Google Scholar 

  15. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Hoboken (2005)

    Google Scholar 

  16. Gao, W., Liu, S., Huang, L.: A global best artificial bee colony algorithm for global optimization. J. Comput. Appl. Math. 236(11), 2741–2753 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing, New York (1989)

    MATH  Google Scholar 

  18. Haijun, D., Qingxian, F.: Artificial bee colony algorithm based on boltzmann selection strategy. Comput. Eng. Appl. 45(32), 53–55 (2009)

    Google Scholar 

  19. Harjunkoski, I., Westerlund, T., Isaksson, J., Skrifvars, H.: Different formulations for solving trim loss problems in a paper-converting mill with {ILP}. Comput. Chem. Eng. 20(suppl. 1), S121–S126 (1996)

    Article  Google Scholar 

  20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Erciyes University, Turkey (2005)

    Google Scholar 

  21. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Karaboga, D., Basturk, B.: Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W. (eds.) Foundations of Fuzzy Logic and Soft Computing. Lecture Notes in Computer Science, vol. 4529, pp. 789–798. Springer, Berlin/Heidelberg (2007)

    Chapter  Google Scholar 

  23. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  25. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2012)

    Article  Google Scholar 

  26. Kaya, A., IV, Keyes, M.A.: Energy management technology in pulp, paper, and allied industries. Automatica 19(2), 111–130 (1983)

    Article  Google Scholar 

  27. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  28. Kompass, E.J.: Fuel optimization control in the paper industry. Control Eng. (Supplement), 1, 49–52 (1979)

    Google Scholar 

  29. Li, G., Niu, P., Xiao, X.: Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Appl. Soft Comput. 12(1), 320–332 (2012)

    Article  Google Scholar 

  30. Menon, S., Schrage, L.: Order allocation for stock cutting in the paper industry. Oper. Res. 50(2), 324–332 (2002)

    Article  MATH  Google Scholar 

  31. Montastruc, L., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: Use of genetic algorithms and gradient based optimization techniques for calcium phosphate precipitation. Chem. Eng. Process. 43(10), 1289–1298 (2004)

    Article  Google Scholar 

  32. Panigrahi, B., Shi, Y., Lim, M. (eds.): Handbook of Swarm Intelligence Series: Adaptation, Learning, and Optimization, vol 7. Springer, Berlin/Heidelberg (2011)

    Google Scholar 

  33. Pant, M., Thangaraj, R., Singh, V.: The economic optimization of pulp and paper making processes using computational intelligence. In: Modelling and Engineering and Technological Problems (ICMETP), pp. 462–471 (2009a)

    Google Scholar 

  34. Pant, M., Thangaraj, R., Singh, V.P.: The economic optimization of pulp and paper making processes using computational intelligence. AIP Conf. Proc. 1146(1), 462–471 (2009b)

    Article  Google Scholar 

  35. Santos, M.O., Almada-Lobo, B.: Integrated pulp and paper mill planning and scheduling. Comput. Ind. Eng. 63(1), 1–12 (2012)

    Article  Google Scholar 

  36. Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Havard University Press, Cambridge (1995)

    Google Scholar 

  37. Sharma, T., Pant, M.: Enhancing the food locations in an artificial bee colony algorithm. Soft Comput. 17(10), 1939–1965 (2013)

    Article  Google Scholar 

  38. Sharma, T., Pant, M., Bansal, J.: Some modifications to enhance the performance of artificial bee colony. In: IEEE Congress on Evolutionary Computation (CEC), 2012, pp. 1–8 (2012)

    Google Scholar 

  39. Srinivas, M., Rangaiah, G.P.: Differential evolution with tabu list for solving nonlinear and mixed-integer nonlinear programming problems. Ind. Eng. Chem. Res. 46(22), 7126–7135 (2007)

    Article  Google Scholar 

  40. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tarvainen, P., Mäkinen, R., Hämäläinen, J.: Shape optimization for laminar and turbulent flows with applications to geometry design of paper machine headboxes. In: 10th International Conference on Finite Elements in Fluids, pp. 536–549 (1998)

    Google Scholar 

  42. Tsai, P., Pan, J., Liao, B., Chu, S.: Enhanced artificial bee colony optimization. Int. J. Innov. Comput. 12(A), 5081–5092 (2009)

    Google Scholar 

  43. Westerlund, T., Harjunkoski, I., Isaksson, J.: Solving a production optimization problem in a paper-converting mill with {MILP}. Comput. Chem. Eng. 22(4–5), 563–570 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Sharma .

Editor information

Editors and Affiliations

Appendix

Appendix

Benchmark Functions

  1. 1.

    The sphere function is described as follows:

    $$\displaystyle{ f_{1}(x) =\sum _{ i=1}^{n}x_{ i}^{2} }$$

    where the initial range of x is [−100, 100]n, and n denotes the dimension of the solution space. The minimum solution of the sphere function is x  = [ 0, 0, ⋯ , 0 ] and f 1(x ) = 0.

  2. 2.

    The Griewank function is described as follows:

    $$\displaystyle{ f_{2}(x) = \frac{1} {4,000}\left (\sum _{i=1}^{n}(x - 100)^{2}\right ) -\left (\varPi _{ i=1}^{n}\cos \left (\frac{x_{i} - 100} {\sqrt{i}} \right )\right ) + 1 }$$

    where the initial range of x is [−600, 600]n. The minimum of the Griewank function is x  = [ 100, 100, , 100 ] and f 6(x ) = 0.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, T.K., Pant, M. (2014). Swarm Intelligence in Pulp and Paper Process Optimization. In: Valadi, J., Siarry, P. (eds) Applications of Metaheuristics in Process Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-06508-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06508-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06507-6

  • Online ISBN: 978-3-319-06508-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics