Skip to main content

Ultrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases

  • Chapter
  • First Online:
Fundamentals of Laser-Assisted Micro- and Nanotechnologies

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 195))

Abstract

Intense ultrafast laser pulses tightly focused in the bulk of transparent material interact with matter in the condition where the conservation of mass is fulfilled. A strong shock wave generated in the interaction region expands into the surrounding cold material and compresses it, which may result in the formation of new states of matter. Here we show that the extreme conditions produced in the ultrafast laser driven micro-explosions can serve as a novel microscopic laboratory for high pressure and temperature studies well beyond the pressure levels achieved in a diamond anvil cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882–884 (1997)

    Article  ADS  Google Scholar 

  2. S. Juodkazis, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  3. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  4. E.G. Gamaly, E. G., S. Juodkazis, H. Misawa, B. Luther-Davies L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)

    Google Scholar 

  5. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949–957 (2002)

    Article  ADS  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  7. D. Arnold, E. Cartier, Phys. Rev. B 46, 15102–15115 (1992)

    Article  ADS  Google Scholar 

  8. K. Sokolowski-Tinten, K. J. Bialkowski, A. Cavalieri, M. Boing, H. Schuler, D. von der Linde, in High-Power Laser Ablation, Proceedings SPIE, vol. 3343, ed. by C. Phipps, Part 1, 46–57 (1998)

    Google Scholar 

  9. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13, 459–468 (1996)

    Article  ADS  Google Scholar 

  10. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, Ch. Spielmann, F. Krausz, Appl. Phys. Lett. 69, 3146 (1996)

    Article  ADS  Google Scholar 

  11. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076–4079 (1998)

    Article  ADS  Google Scholar 

  12. An-Chun Tien, S. Backus, H. Kapteyn, M. Murname, G. Mourou, Phys. Rev. Lett. 82, 3883–3886 (1999)

    Google Scholar 

  13. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202–1214 (2000)

    Article  ADS  Google Scholar 

  14. YuP Raizer, Laser-Induced Discharge Phenomena (Consultant Bureau, New York, 1978)

    Google Scholar 

  15. Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover, New York, 2002)

    Google Scholar 

  16. W.L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, New-York, 1988)

    Google Scholar 

  17. E.G. Gamaly, Phys. Rep. 508, 91–243 (2011)

    Article  ADS  Google Scholar 

  18. E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, A. V. Rode, New J. Phys. 15, 025018 (2013)

    Google Scholar 

  19. Sheng-Nian Luo, T. J. Arens, P. D. Asimov, J. Geophys. Res. 108, 2421 (2003)

    Google Scholar 

  20. S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Mounaix, M.R. Le Gloahec, Nat. Mater. 6, 274–277 (2007)

    Article  ADS  Google Scholar 

  21. D.G. Hicks, P.M. Celliers, G.W. Collins, J.H. Eggert, S.J. Moon, Phys. Rev. Lett. 91, 035502 (2003)

    Article  ADS  Google Scholar 

  22. D. C. Swift, J. A. Hawreliak, D. Braun, A. Kritcher, S. Glenzer, G. Collins, S. D. Rothman, D. Chapman and S. Rose, in Gigabar material properties experiments on NIF and Omega. Shock Compression of Condense Matter - 2011, AIP Conf. Proc., vol. 1426, 477–480 (2012)

    Google Scholar 

  23. R.F. Trunin, Physics-Uspekhi 37, 1123–1146 (1994)

    Article  ADS  Google Scholar 

  24. E.N. Glezer, M. Milosavjevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Masur, Opt. Lett. 21, 2023–2026 (1996)

    Article  ADS  Google Scholar 

  25. S.A. Akhmanov, V.A. Vyspoukh, A.S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988)

    Google Scholar 

  26. V.V. Temnov, V. V. K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde, Phys. Rev. Lett. 97, 237403 (2006)

    Google Scholar 

  27. B.C. Stuart, M.D. Feit, A.M. Rubenchick, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  28. E.G. Gamaly, A. Vailionis, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, High Energy Density Phys. 8, 13–17 (2012)

    Article  ADS  Google Scholar 

  29. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported under Australian Research Council’s Discovery Project funding scheme (project number DP120102980). Partial support to this work by Air Force Office of Scientific Research, USA (FA9550-12-1-0482) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Rode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rapp, L., Haberl, B., Bradby, J.E., Gamaly, E.G., Williams, J.S., Rode, A.V. (2014). Ultrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases. In: Veiko, V., Konov, V. (eds) Fundamentals of Laser-Assisted Micro- and Nanotechnologies. Springer Series in Materials Science, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-05987-7_1

Download citation

Publish with us

Policies and ethics