Skip to main content

Part of the book series: Fuzzy Management Methods ((FMM))

  • 1077 Accesses

Abstract

This chapter examines the foundations of IFC by analyzing the concepts of deduction, fuzziness, and induction. The first subsection explains the classical concepts of sharp and deductive logic and classification; in this section, it is presupposed that all terms are clearly defined. The second section explains what happens when those definitions have fuzzy boundaries and provides the tools, fuzzy logic and fuzzy classification, to reason about this. However, there are many terms that do not only lack a sharp boundary of term definition but also lack a priori definitions. Therefore, the third subsection discusses how such definitions can be inferred through inductive logic and how such inferred propositional functions define inductive fuzzy classes. Finally, this chapter proposes a method to derive precise definitions of vague concepts—membership functions—from data. It develops a methodology for membership function induction using normalized likelihood comparisons, which can be applied to fuzzy classification of individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boole, G. (1847). The matematical analysis of logic, being an essay towards a calculus of deductive reasoning. London: George Bell.

    Google Scholar 

  • Chmielecki, A. (1998). What is information? In Proceedings of the Twentieth World Congress of Philosophy. Boston.

    Google Scholar 

  • Del Amo, A., Montero, J., & Cutello, V. (1999). On the principles of fuzzy classification. Proceedings 18th North American Fuzzy Information Processing Society Annual Conference, (pp. 675–679).

    Google Scholar 

  • Dianhui, W., Dillon, T., & Chang, E. J. (2001). A data mining approach for fuzzy classification rule generation. IFSA World Congress and 20th NAFIPS International Conference, (pp. 2960–2964).

    Google Scholar 

  • Dubois, D. J., & Prade, H. (1980). Fuzzy sets and systems. Theory and applications. New York: Academic Press.

    Google Scholar 

  • Glubrecht, J.-M., Oberschelp, A., & Todt, G. (1983). Klassenlogik. Mannheim: Wissenschaftsverlag.

    Google Scholar 

  • Greene, B. (2011). The hidden reality. Parallel universes and the deep laws of the cosmos. New York: Random House.

    Google Scholar 

  • Hajek, P. (2006). Fuzzy logic. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Hájek, A. (2009). Interpretations of probability. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Hawthorne, J. (2008). Inductive logic. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Hu, Y., Chen, R., & Tzeng, G. (2003). Finding fuzzy classification rules using data mining techniques. Pattern Recognition Letters, 24(1–3), 509–514.

    Google Scholar 

  • Joyce, J. (2003). Bayes’ Theorem. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Kaniza, G. (1976). Subjective contours. Scientific American, 234, 48–52.

    Article  Google Scholar 

  • Meier, A., Schindler, G., & Werro, N. (2008). Fuzzy classification on relational databases. In M. Galindo (Ed.), Handbook of research on fuzzy information processing in databases (Vol. II, pp. 586–614). London: Information Science Reference.

    Chapter  Google Scholar 

  • merriam-webster.com. (2012b). Heap. Retrieved from Merriam Webster Online Dictionnary http://www.merriam-webster.com/dictionary/heap

  • Mill, J. S. (1843). A system of logic. London: John W. Parker, West Strand.

    Google Scholar 

  • Oberschelp, A. (1994). Allgemeine mengenlehre. Mannheim: Wissenschaftsverlag.

    Google Scholar 

  • Precht, R. D. (2007). Wer bin ich - und wenn ja wie viele? Eine philosophische reise. München: Goldmann.

    Google Scholar 

  • Roubos, J. A., Setnes, M., & Abonyi, J. (2003). Learning fuzzy classification rules from labeled data. Information Sciences, 150(1–2), 77–93.

    Article  Google Scholar 

  • Russell, B. (1919). Introduction to mathematical philosophy. London: George Allen & Unwin, Ltd.

    Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. The Bell Systems Technical Journal, 27, 379–423, 623–656.

    Google Scholar 

  • Sorensen, R. (2008). Vagueness. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Vickers, J. (2009). The problem of induction. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: The Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Wang, L., & Mendel, J. (1992). Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414–1427.

    Article  Google Scholar 

  • Weisstein, E. W. (2010a). Conditional probability. Retrieved from MathWorld—A Wolfram Web Resource http://mathworld.wolfram.com/ConditionalProbability.html

  • Weisstein, E. W. (2010b). Correlation coefficient. Retrieved from MathWorld—A Wolfram Web Resource http://mathworld.wolfram.com/CorrelationCoefficient.html

  • Witten, I. H., & Frank, E. (2005). Data mining, practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zadeh, L. A. (1975a). Calculus of fuzzy restrictions. In L. A. Zadeh, K.-S. Fu, K. Tanaka, & M. Shimura (Eds.), Fuzzy sets and their applications to cognitive and decision processes. New York: Academic Press.

    Google Scholar 

  • Zadeh, L. A. (1975b). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, I(8), 199–251.

    Article  Google Scholar 

  • Zadeh, L. A. (2008). Is there a need for fuzzy logic. Information Sciences, 178(13), 2751–2779.

    Article  Google Scholar 

  • Zimmermann, H. J. (1997). Fuzzy data analysis. In O. Kaynak, L. A. Zadeh, B. Turksen, & I. J. Rudas (Eds.), Computational intelligence: Soft computing and fuzzy-neuro integration with applications. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaufmann, M. (2014). Fuzziness and Induction. In: Inductive Fuzzy Classification in Marketing Analytics. Fuzzy Management Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-05861-0_2

Download citation

Publish with us

Policies and ethics