Skip to main content

Inorganic Cryogels

  • Chapter
  • First Online:
Polymeric Cryogels

Part of the book series: Advances in Polymer Science ((POLYMER,volume 263))

Abstract

Recent advances in the application of cryogels in the synthesis and processing of inorganic as well as carbon-based materials are briefly summarized. Synthesis of complex oxides by using polymeric cryogels causes a substantial reduction in phase formation temperature and thus promotes a significant decrease in grain size. Freeze-drying of co-precipitated gels and residues prevents the agglomeration of nanocrystallites usually observed during atmospheric drying. This feature is also widely used for the isolation of nanoparticles prepared by various wet chemical methods. Ceramic materials with oriented tubular pores and mesoporous pore walls can be obtained by using directed crystallization of ice from ceramic slurries. Carbon cryogels with a specific surface area of up to 2,000 m2 g−1 can be prepared by thermal processing of the corresponding polymeric precursors. Cryogel-derived composites of carbon nanotubes and graphene-based materials with various oxides demonstrate outstanding mechanical properties and enhanced electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNT:

Carbon nanotubes

FESEM:

Field emission SEM

GO:

Graphene oxide

HAP:

Hydroxyapatite

RGO:

Reduced graphene oxide

RF:

Resorcinol-formaldehyde

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  1. Klvana D, Chaouki J, Repellin-Lacroix M, Pajonk GM (1989) Rev Phys Appl Colloid 4:C4–29

    Google Scholar 

  2. Pajonk GM (1989) Rev Phys Appl Colloid 4:C4–13

    Google Scholar 

  3. Pajonk GM, Repellin-Lacroix M, Abournadasse S, Chaouki J, Klvana D (1990) J Non-Cryst Solids 121:66

    CAS  Google Scholar 

  4. Scheurell K, Hoppe E, Brzezinka KW, Kemnitz E (2004) J Mater Chem 14:2560

    CAS  Google Scholar 

  5. Borlaf M, Poveda JM, Moreno R, Colomer MT (2012) J Sol-Gel Sci Technol 63:408

    CAS  Google Scholar 

  6. Shu K, Wang C, Wang M, Zhao C, Wallace GC (2014) J Mater Chem A 2:1325

    CAS  Google Scholar 

  7. Trambouze Y (1969) Ann Bull Inst Intern du Froid 9:13

    Google Scholar 

  8. Trambouze Y (1970) Chimie & Industrie Genie Chimique 103:2338

    CAS  Google Scholar 

  9. Roehrig FK, Wright TR (1972) J Am Ceram Soc 55:58

    CAS  Google Scholar 

  10. Landsberg A, Campbell TT (1965) J Metals 17:856

    CAS  Google Scholar 

  11. Wikipedia (2014) Deng_Xiaoping_theory. Wikipedia, The free encyclopedia. Available at http://en.wikipedia.org/wiki/Deng_Xiaoping_Theory

  12. Tretyakov YD, Oleynikov NN, Shlyakhtin OA (1997) Cryochemical technology of advanced materials. Chapman Hall, London

    Google Scholar 

  13. Tretyakov YD, Shlyakhtin OA (1999) J Mater Chem 9:19

    Google Scholar 

  14. Shlyakhtin OA, Oleinikov NN, Tretyakov YD (2005) Cryochemical synthesis of materials. In: Komarneni S, Lee B (eds) Chemical processing of ceramics (2nd edn), vol 28, Materials engineering series. CRC, Boca Raton, p 77

    Google Scholar 

  15. Shlyakhtin OA, Oh YJ (2009) J Electroceramics 23:452

    CAS  Google Scholar 

  16. Rusnano (2011) Pechini method. In: Glossary of nanotechnology and related terms. Available at http://eng.thesaurus.rusnano.com/wiki/article2075

  17. Petrykin V, Kakihana M (2005) Chemistry and applications of polymeric gel precursors. In: Sakka S, Kozuka H (eds) Handbook of sol-gel science and technology, vol 1. Kluwer, Dordrecht, p 77

    Google Scholar 

  18. Junliang L, Yanwei Z, Cuijing G, Wei Z, Xiaowei Y (2010) J Eur Ceram Soc 30:993

    Google Scholar 

  19. Jing Y, Patakangas J, Lund PD, Zhu B (2013) Int J Hydrogen Energy 38:16532

    CAS  Google Scholar 

  20. Fujioka Y, Frantti J, Asiri AM, Obaid AY, Jiang H, Nieminen RM (2012) J Phys Chem C 116:17029

    CAS  Google Scholar 

  21. Tezuka S, Sato Y, Komukai T, Takatsuka Y, Kato H, Kakihana M (2013) Appl Phys Express 6:072101

    Google Scholar 

  22. Iwamura M, Petrykin V, Kakihana M (2007) J Ceram Soc Japan 115:920

    CAS  Google Scholar 

  23. Wang X, Sumboja A, Khoo E, Yan C, Lee PS (2012) J Phys Chem C 116:4930

    CAS  Google Scholar 

  24. Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2012) J Am Ceram Soc 95:1544

    CAS  Google Scholar 

  25. Xiao Q, Tang X, Liu Y, Zhong Y, Zhu W (2013) Front Chem Sci Eng 7:297

    CAS  Google Scholar 

  26. Wang R, Crozier PA, Sharma R, Adams JB (2006) J Phys Chem B 110:18278

    CAS  Google Scholar 

  27. Lee S, Kim HJ, Choi SM, Seo MH, Kim WB (2012) Appl Catal A 429–430:39

    Google Scholar 

  28. Panova TI, Glushkova VB, Lapshin AE (2008) Glass Phys Chem 34:206

    CAS  Google Scholar 

  29. Yang H, Nie S (2009) Mater Chem Phys 114:279

    CAS  Google Scholar 

  30. Kirit S, Dimple S (2012) J Cryst Growth 352:224

    Google Scholar 

  31. Vanea E, Simon V (2013) Appl Surf Sci 280:144

    CAS  Google Scholar 

  32. Naci Koc S, Oksuzomer F, Yasar E, Akturk S, Gurkaynak MA (2006) Mater Res Bull 41:2291

    Google Scholar 

  33. Chesnaud A, Bogicevic C, Karolak F, Estournes C, Dezanneau G (2007) Chem Commun 2007(15):1550

    Google Scholar 

  34. Mionic M, Alexander DTL, Forro L, Magrez A (2008) Phys Stat Sol 245:1915

    CAS  Google Scholar 

  35. Moriyama D, Hirata Y, Sameshima S, Matsunaga N, Doi T, Kashima N, Nagaya S (2009) J Ceram Soc Japan 117:635

    CAS  Google Scholar 

  36. Shiratani K, Hirata Y, Sameshima S, Matsunaga N, Nakahara S (2011) Ceram Intern 37:1525

    CAS  Google Scholar 

  37. Chao C, Ren Z, Liu Z, Xiao Z, Xu G, Li X, Wei X, Shen G, Han G (2011) Appl Surf Sci 257:9768

    CAS  Google Scholar 

  38. Shlyakhtin OA, Skundin AM, Yoon SJ, Oh YJ (2009) Mater Lett 63:109

    CAS  Google Scholar 

  39. Shlyakhtin OA, Mazo GN, Malyshev SA, Kolchina LN, Knot’ko AV, Loktev AS, Dedov AG (2013) Mater Res Bull 48:245

    CAS  Google Scholar 

  40. Harelind H, Gunnarsson F, Vaghefi SMS, Skoglundh M, Carlsson PA (2012) ACS Catal 2:1615

    Google Scholar 

  41. Kannisto H, Arve K, Pingel T, Hellman A, Harelind H, Eranen K, Olsson E, Skoglundh M, Murzin DY (2013) Catal Sci Technol 3:644

    CAS  Google Scholar 

  42. Gunnarsson F, Zheng JY, Kannisto H, Cid C, Lindholm A, Milh M, Skoglundh M, Harelind H (2013) Top Catal 56:416

    CAS  Google Scholar 

  43. Kirchhoff M, Specht U, Veser G (2005) Nanotechnology 16:S401

    CAS  Google Scholar 

  44. Osaki T, Shima S, Miki T, Tai Y (2012) Catal Lett 142:541

    CAS  Google Scholar 

  45. Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) Catal Lett 142:95

    CAS  Google Scholar 

  46. Kim HJ, Choi SM, Nam SH, Seo MH, Kim WB (2009) Catal Today 146:9

    CAS  Google Scholar 

  47. Kim HJ, Choi SM, Nam SH, Seo MH, Kim WB (2009) Appl Catal A 352:145

    CAS  Google Scholar 

  48. Choi JH, Park KW, Park IS, Kim K, Lee JS, Sung YE (2006) J Electrochem Soc 153:A1812

    CAS  Google Scholar 

  49. Jalota S, Bhaduri SB, Cuneyt Tas A (2007) J Biomed Mater Res B 80:304

    Google Scholar 

  50. Osaki T, Nagashima K, Watari K, Tajiri K (2007) J Non-Cryst Solids 353:2436

    CAS  Google Scholar 

  51. Wang X, Ma Y, Li S, Zhu B, Muhammed M (2012) Int J Hydrogen Energy 37:19380

    CAS  Google Scholar 

  52. Han C, Ma Y, Pei C (2013) J Non-Cryst Solids 369:5

    CAS  Google Scholar 

  53. Jimeno C, Miras J, Esquena J (2013) Catal Lett 143:616

    CAS  Google Scholar 

  54. Cao YC (2012) J Colloid Interface Sci 368:139

    CAS  Google Scholar 

  55. Ko HH, Chen HT, Yen FL, Lu WC, Kuo CW, Wang MC (2012) Int J Mol Sci 13:1658

    CAS  Google Scholar 

  56. Shlyakhtin OA, Oh YJ (2006) J Am Ceram Soc 89:3366

    CAS  Google Scholar 

  57. Shlyakhtin OA, Oh YJ (2009) Int J Appl Ceram Technol 6:312

    CAS  Google Scholar 

  58. Gong H, Tang DY, Huang H (2009) J Am Ceram Soc 92:812

    CAS  Google Scholar 

  59. Gong H, Zhang J, Tang DY, Xie GQ, Huang H, Ma J (2011) J Nanopart Res 13:3853

    CAS  Google Scholar 

  60. Suarez M, Fernandez A, Menendez JL, Nygren M, Torrecillas R, Zhao Z (2010) J Eur Ceram Soc 30:1489

    CAS  Google Scholar 

  61. Shlyakhtin OA, Yoon YS, Choi SH, Oh YJ (2004) Electrochim Acta 50:505

    CAS  Google Scholar 

  62. Shlyakhtin OA, Choi SH, Yoon YS, Oh YJ (2005) J Power Sources 141:122

    CAS  Google Scholar 

  63. Jain G, Yang J, Balasubramanian M, Xu JJ (2005) Chem Mater 17:3850

    CAS  Google Scholar 

  64. Qi L, Fresnais J, Muller P, Theodoly O, Berret JF, Chapel JP (2012) Langmuir 28:11448

    CAS  Google Scholar 

  65. Li Y, Yao J, Uchaker E, Yang J, Huang Y, Zhang M, Cao G (2013) Adv Energy Mater 3:1171

    CAS  Google Scholar 

  66. Bianchi CL, Ardizzone S, Cappelletti G (2004) Surf Interface Anal 36:745

    CAS  Google Scholar 

  67. Hessien M, Leґone P, Suchaud M, LeBeau B, Nouali H, Guari Y, Prouzet E (2012) Chem Commun 48:10022

    CAS  Google Scholar 

  68. Su LF, Miao L, Tanemura S, Xu G (2012) Sci Technol Adv Mater 13:035003

    Google Scholar 

  69. Prokopowicz M (2010) J Sol Gel Sci Technol 53:525

    CAS  Google Scholar 

  70. Lu P, Hsieh YL (2012) Powder Technol 225:149

    CAS  Google Scholar 

  71. Hashkovsky SV, Shilova OA, Kuznetsova LA (2005) Glass Phys Chem 31:352

    CAS  Google Scholar 

  72. Chen R, Luo Y, Sun J, Li G (2012) Propellants Explos Pyrotech 37:422

    CAS  Google Scholar 

  73. Kuechl DE, Benin AI, Knight LM, Abrevaya H, Wilson ST, Sinkler W, Mezza TM, Willis RR (2010) Micropor Mesopor Mater 127:104

    CAS  Google Scholar 

  74. Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Chee CK (2008) Ceram Intern 34:2059

    CAS  Google Scholar 

  75. Sinko K (2013) Mater Lett 107:344

    CAS  Google Scholar 

  76. Osaki T, Yamada K, Watari K, Tajiri K, Shima S, Miki T, Tai Y (2012) J Sol Gel Sci Technol 61:268

    CAS  Google Scholar 

  77. Fazio S, Guzm’an J, Colomer MT, Salomoni A, Moreno R (2008) J Eur Ceram Soc 28:2171

    CAS  Google Scholar 

  78. Wang S, Mei Y, Li X, Tan T (2012) Mater Lett 74:1

    Google Scholar 

  79. Liu L, Isobe T, Ling H, Okada K, Nakajima A (2011) Mater Res Bull 46:175

    CAS  Google Scholar 

  80. Yamamoto N, Isobe T, Matsushita S, Nakajima A (2012) J Ceram Soc Japan 120:483

    CAS  Google Scholar 

  81. Jiang PJ, Wynn-Jones G, Grover LM (2010) J Mater Sci 45:5257

    CAS  Google Scholar 

  82. Girija EK, Suresh Kumar G, Thamizhavel A, Yokogawa Y, Narayana Kalkura S (2012) Powder Technol 225:190

    CAS  Google Scholar 

  83. Kawashita M, Matsui N, Li Z, Miyazaki T, Kanetaka H (2011) J Biomed Mater Res B 99:45

    Google Scholar 

  84. Khlebtsov BN, Khanadeev VA, Panfilova EV, Pylaev TE, Bibikova OA, Staroverov SA, Bogatyrev VA, Dykman LA, Khlebtsov NG (2013) Nanotech Russia 8:209

    Google Scholar 

  85. Khlebtsov BN, Panfilova EV, Terentyuk GS, Maksimova IL, Ivanov AV, Khlebtsov NG (2012) Langmuir 28:8994

    CAS  Google Scholar 

  86. Xie J, Lee JY, Wang DIC (2007) Chem Mater 19:2823

    CAS  Google Scholar 

  87. Jung HS, Shin H, Kim JR, Kim JY, Hong KS, Lee JK (2004) Langmuir 20:11732

    CAS  Google Scholar 

  88. Shin H, Jung HS, Hong KS, Lee JK (2005) J Solid State Chem 178:15

    CAS  Google Scholar 

  89. Chiavacci LA, Santilli CV, Pulcinelli SH, Bourgaux C, Briois V (2004) Chem Mater 16:3995

    CAS  Google Scholar 

  90. Kaluza S, Muhler M (2009) Catal Lett 129:287

    CAS  Google Scholar 

  91. Sanchez-Enriquez J, Reyes-Gasga J (2013) Ultrasonics Sonochem 20:1948

    Google Scholar 

  92. Kim S, Ryu HS, Shin H, Jung HS, Hong KS (2005) Mater Chem Phys 91:500

    CAS  Google Scholar 

  93. Millot N, Xin B, Pighini C, Aymes D (2005) J Eur Ceram Soc 25:2013

    CAS  Google Scholar 

  94. Kim SJ, Lee K, Kim JH, Lee NH, Kim SJ (2006) Mater Lett 60:364

    CAS  Google Scholar 

  95. Yang H, Ouyang J, Tang A (2007) J Phys Chem B 111:8006

    CAS  Google Scholar 

  96. Boldrin P, Hebb AK, Chaudhry AA, Otley L, Thiebaut B, Bishop P, Darr JA (2007) Ind Eng Chem Res 46:4830

    CAS  Google Scholar 

  97. Nalbandian L, Delimitis A, Zaspalis VT, Deliyanni EA, Bakoyannakis DN, Peleka EN (2008) Micropor Mesopor Mater 114:465

    CAS  Google Scholar 

  98. Zhang Z, Brown S, Goodall JBM, Weng X, Thompson K, Gonga K, Kellici S, Clark RJH, Evans JRG, Darr JA (2009) J Alloys Compd 476:451

    CAS  Google Scholar 

  99. Kim SJ, Yun YU, Oh HJ, Hong SH, Roberts CA, Routray K, Wachs IE (2010) J Phys Chem Lett 1:130

    CAS  Google Scholar 

  100. Szepesi CJ, Cantonnet J, Allen Kimel R, Adair JH (2011) J Am Ceram Soc 94:4200

    CAS  Google Scholar 

  101. Long Y, Hui J, Wang P, Hu S, Xu B, Xiang G, Zhuang J, Lu X, Wang X (2012) Chem Commun 48:5925

    CAS  Google Scholar 

  102. Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) J Magn Magn Mater 289:439

    CAS  Google Scholar 

  103. Frandsen C, Morup S (2006) J Phys Condens Matter 18:7079

    CAS  Google Scholar 

  104. Arelaro AD, Brandl AL, Lima E, Gamarra LF, Brito GES, Pontuschka WM, Goya GF (2006) J Appl Phys 97:10J316

    Google Scholar 

  105. Ludwig F, Heim E, Menzel D, Schilling M (2006) J Appl Phys 99:08P106

    Google Scholar 

  106. Ludwig F, Heim E, Schilling M (2007) J Appl Phys 101:113909

    Google Scholar 

  107. Ludwig F, Heim E, Schilling M (2009) J Magn Magn Mater 321:1644

    CAS  Google Scholar 

  108. Schmidl F, Weber P, Koettig T, Buttner M, Prass S, Becker C, Mans M, Heinrich J, Roder M, Wagner K, Berkov DV, Goernert P, Glockl G, Weitschies W, Seidel P (2007) J Magn Magn Mater 311:171

    CAS  Google Scholar 

  109. Candelario VM, Guiberteau F, Moreno R, Ortiz AL (2013) J Eur Ceram Soc 33:2473

    CAS  Google Scholar 

  110. Chubilleau C, Lenoir B, Masschelein P, Dauscher A, Candolfi C, Guilmeau E, Godart C (2013) J Mater Sci 48:2761

    CAS  Google Scholar 

  111. Teagarden DL, Baker DS (2002) Eur J Pharm Sci 15:115

    CAS  Google Scholar 

  112. Schaefer J, Rasmussen DH, Partch R (2013) Drying Technol 31:856

    CAS  Google Scholar 

  113. Deqiong Z, Shuming P, Xiaojun C, Xiaoling G, Tongzai Y (2010) J Nucl Mater 396:245

    Google Scholar 

  114. Jerndal E, Mattisson T, Lyngfelt A (2009) Energ Fuels 23:665

    CAS  Google Scholar 

  115. Garcia E, Mesquita-Guimaraes J, Miranzo P, Osendi MI (2011) Surf Coat Technol 205:4304

    CAS  Google Scholar 

  116. Vicent M, Sanchez E, Molina T, Nieto I, Moreno R (2012) J Eur Ceram Soc 32:1019

    CAS  Google Scholar 

  117. Olhero SM, Ganesh I, Torres PMC, Alves FJ, Ferreira JMF (2009) J Am Ceram Soc 92:9

    CAS  Google Scholar 

  118. Mavrodinova V, Popova M, Valchev V, Nickolov R, Minchev C (2005) J Colloid Interface Sci 286:268

    CAS  Google Scholar 

  119. Yao D, Xia Y, Zeng Y, Zuo K, Jiang D (2012) Mater Lett 68:75

    CAS  Google Scholar 

  120. Wu H, Li D, Tang Y, Sun B, Xu D (2009) J Mater Proc Technol 18–19:5886

    Google Scholar 

  121. Roy S, Wanner A (2008) Compos Sci Technol 68:1136

    CAS  Google Scholar 

  122. Tallon C, Jach D, Moreno R, Isabel Nieto M, Rokicki G, Szafran M (2009) J Eur Ceram Soc 29:875

    CAS  Google Scholar 

  123. Zuo KH, Zeng Y, Jiang D (2008) Int J Appl Ceram Technol 5:198

    CAS  Google Scholar 

  124. Zou J, Zhang Y, Li R (2011) Int J Appl Ceram Technol 8:482

    CAS  Google Scholar 

  125. Zuo KH, Zeng YP, Jiang D (2013) Adv Eng Mater 15:490

    Google Scholar 

  126. Grimm S, Lange A, Enke D, Steinhart M (2012) J Mater Chem 22:9490

    CAS  Google Scholar 

  127. Schlordt T, Schwanke S, Keppner F, Fey T, Travitzky N, Greil P (2013) J Eur Ceram Soc 33:3243

    CAS  Google Scholar 

  128. de Hazan Y (2012) J Am Ceram Soc 95:177

    Google Scholar 

  129. Ren L, Zeng Y, Jiang D (2009) Ceram Intern 35:1267

    CAS  Google Scholar 

  130. Depan D, Kumar AP, Singh RP (2009) Acta Biomat 5:93

    CAS  Google Scholar 

  131. Landi E, Valentini F, Tampieri A (2008) Acta Biomat 4:1620

    CAS  Google Scholar 

  132. Monmaturapoj N, Soodsawang W, Thepsuwan W (2012) J Porous Mater 19:441

    CAS  Google Scholar 

  133. Zuo KH, Zhang Y, Zeng YP, Jiang D (2011) Ceram Intern 37:407

    CAS  Google Scholar 

  134. Sinha A, Guha A (2009) Mater Sci Eng C 29:1330

    CAS  Google Scholar 

  135. Jiang L, Morelius E, Zhang J, Wolcott M, Holbery J (2008) J Compos Mater 42:2629

    CAS  Google Scholar 

  136. Jelic TA, Bronic J, Hadzija M, Subotic B, Maric I (2007) Micropor Mesopor Mater 105:65

    Google Scholar 

  137. Koch D, Andresen L, Schmedders T, Grathwohl G (2003) J Sol-Gel Sci Technol 26:149

    CAS  Google Scholar 

  138. Koch D, Soltmann C, Grathwohl G (2007) Key Eng Mater 336–338:1683

    Google Scholar 

  139. Ding S, Zeng YP, Jiang D (2007) J Am Ceram Soc 90:2276

    CAS  Google Scholar 

  140. Moritz T, Richter HJ (2006) J Am Ceram Soc 89:2394

    CAS  Google Scholar 

  141. Moritz T, Richter HJ (2007) J Eur Ceram Soc 27:4595

    CAS  Google Scholar 

  142. Lu K, Kessler CS, Davis RM (2006) J Am Ceram Soc 89:2459

    CAS  Google Scholar 

  143. Lu K (2007) J Am Ceram Soc 90:3753

    CAS  Google Scholar 

  144. Cho YK, Yang TY, Lee JM, Yoon SY, Stevens R, Park HC (2008) J Phys Chem Solids 69:1525

    CAS  Google Scholar 

  145. Gannon P, Sofie S, Deibert M, Smith R, Gorokhovsky V (2009) J Appl Electrochem 39:497

    CAS  Google Scholar 

  146. Zhang R, Fang D, Pei Y, Zhou L (2012) Ceram Intern 38:4373

    CAS  Google Scholar 

  147. Hu L, Zhang Y, Zhan S, Zhou Y (2012) Mater Lett 82:152

    CAS  Google Scholar 

  148. Mukai SR, Nishihara H, Tamon H (2003) Micropor Mesopor Mater 63:43

    CAS  Google Scholar 

  149. Mukai SR, Nishihara H, Tamon H (2004) Chem Commun 2004(7):874

    Google Scholar 

  150. Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Chem Mater 17:683

    CAS  Google Scholar 

  151. Zhang H, Cooper AI (2007) Adv Mater 19:1529

    CAS  Google Scholar 

  152. Deville S (2008) Adv Eng Mater 10:155

    CAS  Google Scholar 

  153. Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C (2009) Nat Mater 9:966

    Google Scholar 

  154. Munch E, Saiz E, Tomsia AP, Deville S (2009) J Am Ceram Soc 92:1534

    CAS  Google Scholar 

  155. Deville S, Maire E, Bernard-Granger G, Lasalle A, Bogner A, Gauthier C, Leloup J, Guizard C (2010) J Am Ceram Soc 93:2507

    CAS  Google Scholar 

  156. Lasalle A, Guizard C, Deville S, Rossignol F, Carles P (2011) J Am Ceram Soc 94:244

    CAS  Google Scholar 

  157. Olevsky EA, Wang X, Bruce E, Stern MB, Wildhack S, Aldinger F (2007) Scripta Mater 56:867

    CAS  Google Scholar 

  158. Lee SH, Jun SH, Kim HE, Koh YH (2008) J Am Ceram Soc 91:1912

    CAS  Google Scholar 

  159. Mukai SR, Nishihara H, Tamon H (2008) Micropor Mesopor Mater 116:166

    CAS  Google Scholar 

  160. Nishihara H, Iwamura S, Kyotani T (2008) J Mater Chem 18:3662

    CAS  Google Scholar 

  161. Chino Y, Dunand DC (2008) Acta Mater 56:105

    CAS  Google Scholar 

  162. Fukushima M, Nakata M, Zhou Y, Ohji T, Yoshizawa Y (2010) J Eur Ceram Soc 14:2889

    Google Scholar 

  163. Nishihara H, Mukai SR, Shichi S, Tamon H (2010) Mater Lett 64:959

    CAS  Google Scholar 

  164. Mukai SR, Onodera K, Yamada I (2011) Adsorption 17:49

    CAS  Google Scholar 

  165. Oh S, Chang S, Suk M (2012) Trans Nonferrous Met Soc China 22:s688

    CAS  Google Scholar 

  166. Fukushima M (2013) J Ceram Soc Japan 121:182

    Google Scholar 

  167. Tamon H, Akatsuka T, Mori H, Sano N (2013) Chem Eng Trans 32:2059

    Google Scholar 

  168. Khaleghi E, Olevsky E, Meyers M (2009) J Am Ceram Soc 92:1487

    CAS  Google Scholar 

  169. Yoon HJ, Kim UC, Kim JH, Koh YH (2010) J Am Ceram Soc 93:1580

    CAS  Google Scholar 

  170. Zheng J, Salamon D, Lefferts L, Wessling M, Winnubst L (2010) Micropor Mesopor Mater 134:216

    CAS  Google Scholar 

  171. Hu L, Wang C, Huang Y, Sun C, Lu S, Hu Z (2010) J Eur Ceram Soc 30:3389

    CAS  Google Scholar 

  172. Deng ZY, Fernandes HR, Ventura JM, Kannan S, Ferreira JMF (2007) J Am Ceram Soc 90:1265

    CAS  Google Scholar 

  173. He Y, Zhang N, Gong Q, Li Z, Gao J, Xiu H (2012) Mater Chem Phys 134:585

    CAS  Google Scholar 

  174. Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) J Biomed Mater Res B 86:125

    Google Scholar 

  175. Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) J Biomed Mater Res B 86:514

    Google Scholar 

  176. Fu Q, Rahaman MN, Dogan F, Sonny Bal B (2008) Biomed Mater 3:025005

    Google Scholar 

  177. Rahaman MN, Fu Q (2008) J Am Ceram Soc 91:4137

    CAS  Google Scholar 

  178. Zuo KH, Zeng Y, Jiang D (2010) Mater Design 31:3090

    CAS  Google Scholar 

  179. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Science 311:515

    CAS  Google Scholar 

  180. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Science 322:1516

    CAS  Google Scholar 

  181. Tamon H, Ishizaka H (1999) Drying Technol 17:1653

    CAS  Google Scholar 

  182. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Carbon 37:2049

    CAS  Google Scholar 

  183. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Carbon 38:1099

    CAS  Google Scholar 

  184. Szczurek A, Amaral-Labat G, Fierro V, Pizzi A, Celzard A (2011) Sci Technol Adv Mater 12:035001

    Google Scholar 

  185. Czakkel O, Marthi K, Geissler E, Laszlo K (2005) Micropor Mesopor Mater 86:124

    CAS  Google Scholar 

  186. Feaver A, Cao G (2006) Carbon 44:590

    CAS  Google Scholar 

  187. Alvares Rodrigues L, Parmentier J, Parra JB, Thim GP (2013) J Sol Gel Sci Technol 67:519

    Google Scholar 

  188. Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2007) Micropor Mesopor Mater 98:258

    CAS  Google Scholar 

  189. Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2008) J Porous Mater 15:695

    CAS  Google Scholar 

  190. Kraiwattanawong K, Mukai SR, Tamon H, Lothongkum AW (2008) Micropor Mesopor Mater 115:432

    CAS  Google Scholar 

  191. Amaral-Labat G, Szczurek A, Fierro V, Stein N, Boulanger C, Pizzi A, Celzard A (2012) Biomass Bioenerg 39:274

    CAS  Google Scholar 

  192. Arbizzani C, Beninati S, Manferrari E, Soavi F, Mastragostino M (2006) J Power Sources 161:826

    CAS  Google Scholar 

  193. Arbizzani C, Beninati S, Soavi F, Varzi A, Mastragostino M (2008) J Power Sources 185:615

    CAS  Google Scholar 

  194. Babic VM, Vracar LM, Radmilovic V, Krstajic NV (2006) Electrochim Acta 51:3820

    CAS  Google Scholar 

  195. Elezovic NR, Babic BM, Krstajic NV, Gajic-Krstajic LM, Vracar LM (2007) Int J Hydrogen Energ 32:1991

    CAS  Google Scholar 

  196. Babic VM, Kaluderovic BV, Vracar LM, Radmilovic V, Krstajic NV (2007) J Serb Chem Soc 72:773

    CAS  Google Scholar 

  197. Horikawa T, Sekida T, Hayashi J, Katoh M, Do DD (2011) Carbon 49:416

    CAS  Google Scholar 

  198. Yamamoto T, Kataoka S, Ohmori T (2010) J Hazard Mater 177:331

    CAS  Google Scholar 

  199. Kim SI, Yamamoto T, Endo A, Ohmori T, Nakaiwa M (2006) Micropor Mesopor Mater 96:191

    CAS  Google Scholar 

  200. Garcia BB, Feaver AM, Zhang Q, Champion RD, Cao G, Fister TT, Nagle KP, Seidler GT (2008) J Appl Phys 104:014305

    Google Scholar 

  201. Garcia BB, Candelaria SL, Liu D, Sepheri S, Cruz JA, Cao G (2011) Renew Energ 36:1788

    CAS  Google Scholar 

  202. Arbizzani C, Beninati S, Lazzari M, Soavi F, Mastragostino M (2007) J Power Sources 174:648

    CAS  Google Scholar 

  203. Candelaria SL, Garcia BB, Liu D, Cao G (2012) J Mater Chem 22:9884

    CAS  Google Scholar 

  204. Candelaria SL, Chen R, Jeong YH, Cao G (2012) Energy Environ Sci 5:5619

    CAS  Google Scholar 

  205. Song MS, Nahm S, Oh YJ (2008) J Kor Ceram Soc 45:662

    CAS  Google Scholar 

  206. Kraiwattanawong K, Sano N, Tamon H (2013) Micropor Mesopor Mater 165:228

    CAS  Google Scholar 

  207. Pan A, Liu D, Zhou X, Garcia BB, Liang S, Liu J, Cao G (2010) J Power Sources 195:3893

    CAS  Google Scholar 

  208. Zhang M, Li Y, Uchaker E, Candelaria S, Shen L, Wang T, Cao G (2013) Nano Energ 2:769

    CAS  Google Scholar 

  209. Kraiwattanawong K, Sano N, Tamon H (2011) Carbon 49:3404

    CAS  Google Scholar 

  210. Kraiwattanawong K, Sano N, Tamon H (2012) Micropor Mesopor Mater 153:47

    CAS  Google Scholar 

  211. Babic B, Kokunesoski M, Miljkovic M, Prekajski M, Matovic B, Gulicovski J, Bucevac D (2012) Ceram Int 38:4875

    CAS  Google Scholar 

  212. Markovic ZM, Babic BM, Dramicanin MD, Holclajtner Antunovic ID, Pavlovic VB, Perusko DB, Todorovic Markovic BM (2012) Synth Metals 162:743

    CAS  Google Scholar 

  213. Editorial (2013) Carbon 65:1

    Google Scholar 

  214. Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B (2011) J Mater Chem 21:6494

    CAS  Google Scholar 

  215. Wu T, Chen M, Zhang L, Xu X, Liu Y, Yan J, Wang W, Gao J (2013) J Mater Chem A 1:7612

    CAS  Google Scholar 

  216. Cao Y, Feng J, Wu P (2010) Carbon 48:3834

    Google Scholar 

  217. Yang XW, He YS, Liao XZ, Ma ZF (2011) Acta Phys Chim Sinica 27:2583

    CAS  Google Scholar 

  218. Ning G, Xu C, Mu L, Chen G, Wang G, Gao J, Fan Z, Qian W, Wei F (2012) Chem Commun 48:6815

    CAS  Google Scholar 

  219. Oyer AJ, Carillo JMY, Hire CC, Schniepp HC, Asandei AD, Dobrynin AV, Adamson DH (2012) J Am Chem Soc 134:5018

    CAS  Google Scholar 

  220. Leenaerts O, Partoens E, Peeters FM (2009) Phys Rev B 79:235440

    Google Scholar 

  221. Mi X, Huang G, Xie W, Wang W, Liu Y, Gao J (2012) Carbon 50:4856

    CAS  Google Scholar 

  222. He Y, Zhang N, Wu F, Xu F, Liu Y, Gao J (2013) Mater Res Bull 48:3553

    CAS  Google Scholar 

  223. Ma J, Wang X, Liu Y, Wu T, Liu Y, Guo Y, Li R, Sun X, Wu F, Li C, Gao J (2013) J Mater Chem A 1:2192

    CAS  Google Scholar 

  224. Dhakshinamoorthy A, Alvaro M, Concepcion P, Fornes V, Garcia H (2012) Chem Commun 48:5443

    CAS  Google Scholar 

  225. He Y, Zhang N, Long Y, Sun H, Qiu H, Gao J (2012) Adv Mater Res 430–432:488

    Google Scholar 

  226. Maugey M, Neri W, Zakri C, Derre Penicaud A, Noe L, Chorro M, Launois P, Monthioux M, Poulin P (2007) J Nanosci Nanotechnol 7:2633

    CAS  Google Scholar 

  227. Kim TH, Doe C, Kline SR, Choi SM (2007) Adv Mater 19:929

    CAS  Google Scholar 

  228. Meng Z, Wu D, Wang L, Zhu H, Li Q (2012) Particuology 10:614

    CAS  Google Scholar 

  229. Taquahashi Y, Ogawa Y, Takagi A, Tsuji M, Morita K, Kanno J (2013) J Toxicol Sci 38:619

    CAS  Google Scholar 

  230. Yun YS, Bak H, Jin HJ (2010) Synth Metals 160:561

    CAS  Google Scholar 

  231. Nakagawa K, Thongprachan N, Charinpanitkul T, Tanthapanichakoon W (2010) Chem Eng Sci 65:1438

    CAS  Google Scholar 

  232. Nakagawa K, Yasumura Y, Thongprachan N, Noriaki Sano N (2011) Chem Eng Proc Proc Intens 50:22

    CAS  Google Scholar 

  233. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Adv Mater 19:661

    CAS  Google Scholar 

  234. Liang L, Liu H, Yang W (2013) J Alloys Compd 559:167

    CAS  Google Scholar 

  235. Zhou X, Yin YX, Wan LJ, Guo YG (2012) Chem Commun 48:2198

    CAS  Google Scholar 

  236. Xin X, Yao X, Zhang Y, Liu Z, Xu X (2012) J Solid State Electrochem 16:2733

    CAS  Google Scholar 

  237. Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C (2013) J Power Sources 237:178

    CAS  Google Scholar 

  238. You B, Wang L, Yao L, Yang J (2013) Chem Commun 49:5016

    CAS  Google Scholar 

  239. Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Ceram Intern 40:1289

    Google Scholar 

  240. Guiderdoni C, Estournes C, Peigney A, Weibel A, Turq V, Laurent C (2011) Carbon 49:4535

    CAS  Google Scholar 

  241. Khaleghi E, Torikachvili M, Meyers MA, Olevsky EA (2012) Mater Lett 79:256

    CAS  Google Scholar 

  242. Capobianchi A, Foglia S, Imperatori P, Notargiacomo A, Giammatteo M, Del Buono T, Palange E (2007) Carbon 45:2205

    CAS  Google Scholar 

Download references

Acknowledgements

Partial support by the Russian Foundation for Basic Research (grant 12-08-01241a) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Shlyakhtin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shlyakhtin, O.A. (2014). Inorganic Cryogels. In: Okay, O. (eds) Polymeric Cryogels. Advances in Polymer Science, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-319-05846-7_6

Download citation

Publish with us

Policies and ethics