Skip to main content

A Schur Complement Method for Compressible Two-Phase Flow Models

  • Conference paper
  • First Online:
Book cover Domain Decomposition Methods in Science and Engineering XXI

Abstract

In this paper, we will report our recent efforts to apply a Schur complement method for nonlinear hyperbolic problems. We use the finite volume method and an implicit version of the Roe approximate Riemann solver. With the interface variable introduced in Dao et al. (A Schur complement method for compressible Navier-Stokes equations. In: Proceedings of the 20th International Conference on Domain Decomposition Methods, 2011) in the context of single phase flows, we are able to simulate two-fluid models (Ndjinga et al., Nucl. Eng. Des. 238, 2008) with various schemes such as upwind, centered or Rusanov. Moreover, we introduce a scaling strategy to improve the condition number of both the interface system and the local systems. Numerical results for the isentropic two-fluid model and the compressible Navier-Stokes equations in various 2D and 3D configurations and various schemes show that our method is robust and efficient. The scaling strategy considerably reduces the number of GMRES iterations in both interface system and local system resolutions. Comparisons of performances with classical distributed computing with up to 218 processors are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergeaud, V., Fillion, P., Dérouillat, J.: Etude bibliographique sur l’inversion parallèle des matrices ovap. Tech. rep., Rapport CS/311-1/AB06A002-010/RAP/07-065 version 1.0 (2007)

    Google Scholar 

  3. Dao, T., Ndjinga, M., Magoulès, F.: Comparison of upwind and centered schemes for low Mach number flows. In: Proceedings of the International Symposium Finite Volumes for Complex Application VI. Springer Proceedings in Mathematics, vol. 4, pp. 303–311 (2011)

    Google Scholar 

  4. Dao, T., Ndjinga, M., Magoulès, F.: A Schur complement method for compressible Navier-Stokes equations. In: Proceedings of the 20th International Conference on Domain Decomposition Methods (2011)

    Google Scholar 

  5. Dolean, V., Lanteri, S.: A domain decomposition approach to finite volume solution of the Euler equations on unstructured triangular meshes. Int. J. Numer. Methods Fluids 37(6), 625–656 (2001)

    Article  MATH  Google Scholar 

  6. Drew, D.A., Passman, S.L.: Theory of Multicomponents Fluids. Springer, New York (1999)

    Book  Google Scholar 

  7. Fillion, P., Chanoine, A., Dellacherie, S., Kumbaro, A.: Flica-ovap: a new platform for core thermal-hydraulic studies. In: NURETH-13 (2009)

    Google Scholar 

  8. Ishii, M.: Thermo-Fluid Dynamic Theory of Two-Phase Flow. Eyrolles, Paris (1975)

    MATH  Google Scholar 

  9. Kruis, J.: Domain Decomposition Methods for Distributed Computing. Saxe-Coburg Publications, Stirling (2006)

    Google Scholar 

  10. Maday, Y., Magoulès, F.: Absorbing interface conditions for domain decomposition methods: a general presentation. Comput. Methods Appl. Mech. Eng. 195(29–32), 3880–3900 (2006)

    Article  MATH  Google Scholar 

  11. Magoulès, F., Roux, F.X.: Lagrangian formulation of domain decomposition methods: a unified theory. Appl. Math. Model. 30(7), 593–615 (2006)

    Article  MATH  Google Scholar 

  12. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  13. Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  14. Toselli, A., Widlund, O.B.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  15. Toumi, I., Caruge, D.: An implicit second order method for 3d two-phase flow calculations. Nucl. Sci. Eng. 130, 213–225 (1998)

    Google Scholar 

  16. Toumi, I., Kumbaro, A.: An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124, 286–300 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Magoulès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dao, TH., Ndjinga, M., Magoulès, F. (2014). A Schur Complement Method for Compressible Two-Phase Flow Models. In: Erhel, J., Gander, M., Halpern, L., Pichot, G., Sassi, T., Widlund, O. (eds) Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes in Computational Science and Engineering, vol 98. Springer, Cham. https://doi.org/10.1007/978-3-319-05789-7_73

Download citation

Publish with us

Policies and ethics