Skip to main content

Disorder and Environmental Effects on Nanodomain Growth

  • Chapter
  • First Online:
  • 1377 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Point and line defects in the lattice structure of ferroelectric materials play a key role in the formation and growth of domains by providing nucleation centers and domain wall pinning sites, thus affecting polarization switching properties both on macroscopic and nanoscopic scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the thicker PZT\(_\mathrm {DSO}\), a few domains of opposite polarity were observed near the sample edges. All measurements were however carried on purely monodomain regions near the center of the sample.

  2. 2.

    We note that in this chapter, \(r\) denotes the effective radius of domains, whereas it was used to denote length scales between discrete steps and the interface size in Chaps. 68.

  3. 3.

    As shown by phase-field [2] and finite-element [9] simulations of the electric field generated by an AFM tip, the \(1/r\) dependence is a better approximation for the lateral decay of the vertical component of the electric field with respect to \(1/r^2\) given by an effective point charge.

References

  1. P. Gao, C.T. Nelson, J.R. Jokisaari, S.-H. Baek, C.W. Bark, Y. Zhang, E.G. Wang, D.G. Schlom, C.-B. Eom, X.Q. Pan, Revealing the role of defects in ferroelectric switching with atomic resolution. Nature Comm. 2, 591 (2011)

    Article  ADS  Google Scholar 

  2. A.N. Morozovska, E.A. Eliseev, Y. Li, S.V. Svechnikov, P. Maksymovych, V.Y. Shur, V. Gopalan, L.-Q. Chen, S.V. Kalinin, Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach. Phys. Rev. B 80, 214110 (2009)

    Article  ADS  Google Scholar 

  3. P. Paruch, T. Giamarchi, J.-M. Triscone, Nanoscale studies of domain walls in epitaxial ferroelectric thin films, in Physics of Ferroelectrics, a Modern Perspective, ed. by K. Rabe, C.H. Ahn, J.-M. Triscone (Springer, Berlin, 2007), p. 339

    Chapter  Google Scholar 

  4. P. Paruch, J. Guyonnet, Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces. C.R. Phys. 14, 667 (2013)

    Article  ADS  Google Scholar 

  5. B.L. Weeks, M.W. Vaughn, J.J. DeYoreo, Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21, 8096 (2005)

    Article  Google Scholar 

  6. D. Dahan, M. Molotskii, G. Rosenman, Y. Rosenwaks, Ferroelectric domain inversion: the role of humidity. Appl. Phys. Lett. 89, 152902 (2006)

    Article  ADS  Google Scholar 

  7. P. Maksymovych, S. Jesse, M. Huijben, R. Ramesh, A. Morozovska, S. Choudhury, L.-Q. Chen, A.P. Baddorf, Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces. Phys. Rev. Lett. 102, 017601 (2009)

    Article  ADS  Google Scholar 

  8. S.V. Kalinin, D.A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002)

    Article  ADS  Google Scholar 

  9. C. Blaser, P. Paruch, Minimum domain size and stability in carbon nanotube-ferroelectric devices. Appl. Phys. Lett. 101, 142906 (2012)

    Article  ADS  Google Scholar 

  10. A. Brugère, S. Gidon, B. Gautier, Finite element method simulation of the domain growth kinetics in single-crystal LiTaO\(_3\): role of surface conductivity. J. Appl. Phys. 110, 052016 (2011)

    Article  ADS  Google Scholar 

  11. G.L. Yuan, L.W. Martin, R. Ramesh, A. Uedono, The dependence of oxygen vacancy distributions in BiFeO\(_3\) films on oxygen pressure and substrate. Appl. Phys. Lett. 95, 012904 (2009)

    Article  ADS  Google Scholar 

  12. I. Gaponenko, J. Karthik, L.W. Martin, P. Paruch, Manuscript in preparation

    Google Scholar 

  13. S. Jesse, A.P. Baddorf, S.V. Kalinin, Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. Appl. Phys. Lett. 88, 062908 (2006)

    Article  ADS  Google Scholar 

  14. P. Paruch, T. Tybell, J.-M. Triscone, Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) thin films. Appl. Phys. Lett. 79, 530 (2001)

    Article  ADS  Google Scholar 

  15. T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall creep in epitaxial ferroelectric Pb(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  ADS  Google Scholar 

  16. P. Paruch, T. Giamarchi, T. Tybell, J.-M. Triscone, Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films. J. Appl. Phys. 100, 051608 (2006)

    Article  ADS  Google Scholar 

  17. N.A. Pertsev, D.A. Kiselev, I.K. Bdikin, M. Kosec, A.L. Kholkin, Quasi-one-dimensional domain walls in ferroelectric ceramics: evidence from domain dynamics and wall roughness measurements. J. Appl. Phys. 110, 052001 (2011)

    Article  ADS  Google Scholar 

  18. T. Nattermann, Interface phenomenology, dipolar interaction, and the dimensionality dependence of the incommensurate-commensurate transition. J. Phys. C 16, 4125 (1983)

    Article  ADS  Google Scholar 

  19. T. Giamarchi, A.B. Kolton, A. Rosso, Dynamics of disordered elastic systems, in Jamming, Yielding and Irreversible Deformation in Condensed Matter, ed. by M.C. Miguel, J.M. Rubi (Springer, Berlin, 2006), p. 91

    Chapter  Google Scholar 

  20. P. Paruch, T. Giamarchi, J.-M. Triscone, Domain wall creep in mixed \(c\)-\(a\) axis Pb(Zr\(_{0.2}\)Ti\(_{0.8}\))O\(_3\) thin films. Ann. der Phys. 13, 95 (2004)

    Article  ADS  Google Scholar 

  21. M. Bauer, A. Mougin, J.P. Jamet, V. Repain, J. Ferré, R.L. Stamps, H. Bernas, C. Chappert, Deroughening of domain wall pairs by dipolar repulsion. Phys. Rev. Lett. 94, 207211 (2005)

    Article  ADS  Google Scholar 

  22. E.A. Jagla, Numerical simulations of two-dimensional magnetic domain patterns. Phys. Rev. E 70, 046204 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill Guyonnet .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guyonnet, J. (2014). Disorder and Environmental Effects on Nanodomain Growth. In: Ferroelectric Domain Walls. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-05750-7_9

Download citation

Publish with us

Policies and ethics