Skip to main content

Surface-Active Compounds of Microbial Origin and Their Potential Application in Technologies of Environmental Remediation

  • Chapter
  • First Online:
Bioremediation in Latin America

Abstract

The world is now confronted with serious problems of environmental contamination. Industrial and mining activities represent the main sources of heavy metal contamination, which provide unique challenges for their remediation, as they cannot be degraded into innocuous products. On the other hand, extensive production and use of hydrocarbons and pesticides in diverse fields has resulted in widespread environmental contamination by these chemicals. A variety of remediation technologies that include physicochemical methods are available to address contamination with organic and inorganic pollutants. However, these technologies have high cost and the risk of secondary environmental pollution. The microbial remediation includes the use of certain microorganisms or products derived to them to address the problems of environmental pollution. In this connection, the synthesis and release of exopolymers with surfactants activity is one of the strategies of the first microbial cell defense line against diverse toxics. These compounds can be successfully used to release hydrocarbons and other pollutants of low solubility from soils matrix. There are also reports regarding the release of heavy metals from soils and sediments using compounds of biological origin as surfactants microbial. This chapter considers the current advances on this topic, emphasizing on the properties and potential applications of microbial surfactants in environmental remediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aniszewski E, Peixoto RS, Mota FF, Rosado A et al (2010) Bioemulsifier production by Microbacterium sp. strains isolated from mangrove and their application to remove cadmium and zinc from hazardous industrial residues. Braz J Microbiol 41:235–245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  PubMed  CAS  Google Scholar 

  • Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci Total Environ 407:3634–3640

    Article  PubMed  CAS  Google Scholar 

  • Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microbial Cell Fact 8:1–7

    Article  Google Scholar 

  • Cavalcante Barros FF, Resende Simiqueli AP, de Andrade CJ, Pastore GM (2013) Production of enzymes from agroindustrial wastes by biosurfactant-producing strains of Bacillus subtilis. Biotechnol Res Int. http://dx.doi.org/10.1155/2013/103960

  • Colin VL, Baigorí MD, Pera LM (2010) Bioemulsifier production by Aspergillus niger MYA 135: presumptive role of iron and phosphate on emulsifying ability. World J Microbiol Biotechnol 26:2291–2295

    Article  CAS  Google Scholar 

  • Colin VL, Castro MF, Amoroso MJ, Villegas LB (2013a) Bioemulifiers production by Amycolatopsis tucumanensis and their potential application for hexavalent chromium removal from soil. J Hazard Mater 261:577–583

    Article  PubMed  CAS  Google Scholar 

  • Colin VL, Pereira CE, Villegas LB, Amoroso MJ, Abate CM (2013b) Production and partial characterization of bioemulsifer from a chromium-resistant actinobacterria. Chemosphera 90:1372–1378

    Article  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    PubMed  CAS  PubMed Central  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Daverey A, Pakshirajan K (2010) Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low-cost fermentative medium. Appl Biochem Biotechnol 160:2090–2101

    Article  PubMed  CAS  Google Scholar 

  • de Gusmão C, Rufino R, Sarubbo L (2010) Laboratory production and characterization of a new biosurfactant from Candida glabrata UCP1002 cultivated in vegetable fat waste applied to the removal of hydrophobic contaminant. World J Microbiol Biotechnol 26:1683–1692

    Article  Google Scholar 

  • Fontes GC, Ramos NM, Amaral PFF, Nele M, Coelho MAZ (2012) Renewable resources for biosurfactant production by Yarrowia lipolytica. Braz J Chem Eng 29:483–493

    Article  CAS  Google Scholar 

  • Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G (2009) Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75:801–807

    Article  PubMed  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L (2012) Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour Technol 108:245–251

    Article  PubMed  CAS  Google Scholar 

  • Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB (2010) Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism is the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloid Surf B 79:334–339

    Article  CAS  Google Scholar 

  • Guerra de Oliveira J, García-Cruz CH (2013) Properties of a biosurfactant produced by Bacillus pumilus using vinasse and waste frying oil as alternative carbon sources. Braz Arch Biol Technol 56:155–160

    Article  CAS  Google Scholar 

  • Gutierrez T, Shimmield T, Haidon C, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolimer produced by Pseudoalteromonas sp.strain TG12. Appl Environ Microbiol 15:4867–4876

    Article  Google Scholar 

  • Jayashree R, Vasudevan N, Chandrasekaran S (2006) Surfactants enhanced recovery of endosulfan from contaminated soils. Int J Environ Sci Technol 3:251–259

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790

    Article  PubMed  CAS  Google Scholar 

  • Kosaric N (2001) Biosurfactants for soil bioremediation. Food Technol Biotechnol 39:295–304

    CAS  Google Scholar 

  • Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167:609–614

    Article  PubMed  CAS  Google Scholar 

  • Lang S, Philp JC (1998) Surface-active lipids in rhodococci. A Van Leeuw Int J Genet Mol Microbiol 74:59–70

    Article  CAS  Google Scholar 

  • Luna JM, Rufino RD, Campos-Takaki GM, Leonie AS (2012) Properties of the biosurfactant produced by Candida Sphaerica cultivated in low-cost substrates. Chem Eng Trans 27:67–72

    Google Scholar 

  • Madry N, Sprinkmeyer N, Pape H (1979) Regulation of tylosin synthesis in Streptomyces: effects of glucose analogs and inorganic phosphate. Eur J Appl Microbiol Biotechnol 7:365–370

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743

    Article  PubMed  CAS  Google Scholar 

  • Nievas ML, Commendatore MG, Estevas JL, Bucalá V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Mater 154:96–104

    Article  PubMed  CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pagilla KR, Sood A, Kim H (2002) Gordonia (Nocardia) amarae foaming due to biosurfactant production. Water Sci Technol 46:519–524

    PubMed  CAS  Google Scholar 

  • Patel MN, Gopinathan KP (1986) Lysozyme-sensitive bioemulsifier for immiscible organophosphorus pesticides. Appl Environ Microbiol 52:1224–1226

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983

    Article  PubMed  CAS  Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation. Current developments and perspectives. Genet Eng Biotechnol J 29:1–14

    Google Scholar 

  • Sanches Carrocci J, Yuji Mori R, Cobra Guimarães OL, dos Santos Salazar RF, Fernandes de Oliveira M, de Castro Peixoto AL, Filho HJI (2012) Application of heterogenous catalysis with TiO2 photo irradiated by sunlight and latter activated sludge system for the reduction of vinasse organic load. Engineering 4:46–76

    Article  Google Scholar 

  • Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  PubMed  CAS  Google Scholar 

  • Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917

    Article  CAS  Google Scholar 

  • Souza FASD, Salgueiro AA, Albuquerque CDC (2012) Production of bioemulsifiers by Yarrowia lipolytica in sea water using diesel oil as the carbon source. Braz J Chem Eng 29:61–67

    Article  CAS  Google Scholar 

  • Takahashi M, Morita T, Wada K, Hirose N, Fukuoka T, Imura T, Kitamoto D (2011) Production of sophorolipid glycolipid biosurfactants from sugarcane molasses using Starmerellabombicola NBRC 10243. J Oleo Sci 60:267–273

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Mulligan CN (2009) Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem 24:928–935

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial assistance of CIUNT D/401 and CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Leticia Colin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colin, V.L., Cortes, Á.J., Rodríguez, A., Amoroso, M.J. (2014). Surface-Active Compounds of Microbial Origin and Their Potential Application in Technologies of Environmental Remediation. In: Alvarez, A., Polti, M. (eds) Bioremediation in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-05738-5_16

Download citation

Publish with us

Policies and ethics