Skip to main content

Jordan Groups and Automorphism Groups of Algebraic Varieties

  • Conference paper
  • First Online:
Automorphisms in Birational and Affine Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 79))

Abstract

The first section of this paper is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. The appendix contains formulations of some open problems and the relevant comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is proved in the recent preprint I. Mundet i Riera, Finite group actions on spheres, Euclidean spaces, and compact manifolds with χ ≠ 0 (March 2014) [arXiv:1403.0383] that if M is a sphere, an Euclidean space \(\mathbb{R}^{n}\), or a compact manifold (possibly with boundary) with nonzero Euler characteristic, then Diff(M) is Jordan.

  2. 2.

    Recently I found that in some papers toral varieties are called very affine varieties.

  3. 3.

    The answer is obtained in the recent preprint I. Mundet i Riera, Finite group actions on spheres, Euclidean spaces, and compact manifolds with χ ≠ 0 (March 2014) [arXiv:1403.0383] (see also the footnote at the end of Sect. 1.2.4): \(\mathrm{Diff}(\mathbb{R}^{n})\) is Jordan for every n. Given Theorem 3(1)(i), this yields the following

    Theorem. Aut(A n) is Jordan for every n.

  4. 4.

    See the footnote at the end of Sect. 2.2.3

  5. 5.

    It is proved in the recent preprint T.I. Bandman, Y.G. Zarhin, Jordan groups and algebraic surfaces (April 2014) [arXiv:1404.1581] that if X is birationally isomophic P 1 × E, where E is an elliptic curve, then Aut(X) is Jordan. The proof is based on the other recent preprint Y.G. Zarhin, Jordan groups and elliptic ruled surfaces (January 2014) [arXiv:1401.7596], where this is proved for projective X. Given Theorem 11, we then obtain

    Theorem. If X is a variety of dimension ⩽2, then Aut(X) is Jordan.

  6. 6.

    See the footnote at the end of Sect. 2.2.3

  7. 7.

    The proof in [53] should be corrected as follows. Assume that there is a faithful action of G of a smooth projective curve Y and a dominant G-equivariant morphism \(\varphi: X \rightarrow Y\) of degree n > 1. By the construction, X and Y have the same genus g > 1, and the Hurwitz formula yields that the number of branch points of \(\varphi\) (counted with positive multiplicities) is the integer \((n - 1)(2 - 2g)\). But the latter is negative—a contradiction.

References

  1. S.I. Adian, The Burnside problem and related topics. Russ. Math. Surv. 65(5), 805–855 (2011)

    Article  Google Scholar 

  2. S.I. Adian, New bounds of odd periods for which we can prove the infinity of free Burnside groups, in International Conference “Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics”. Steklov Math. Inst. RAS, Moscow, 13 May 2013. http://www.mathnet.ru/php/presentation.phtml?&presentid=6786&option_lang=eng

  3. M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, 1969)

    MATH  Google Scholar 

  4. I. Barsotti, Structure theorems for group varieties. Ann. Mat. Pura Appl. 38(4), 77–119 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Borel, Linear Algebraic Groups, 2nd edn. (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  6. J.W. Cannon, W.J. Floyd, W.R. Parry, Introductory notes on Richard Thompson’s groups. L.’Enseignement Math. Revue Internat. IIe Sér. 42(3), 215–256 (1996)

    Google Scholar 

  7. S. Cantat, Morphisms between Cremona groups and a characterization of rational varieties. Preprint (2012), http://perso.univ-rennes1.fr/serge.cantat/publications.html

  8. S. Cantat, Letter of May 31, 2013 to V.L. Popov.

    Google Scholar 

  9. D. Cerveau, J. Deserti, Transformations birationnelles de petit degreé (April 2009) [arXiv:0811.2325]

    Google Scholar 

  10. Y. Cornulier, Nonlinearity of some subgroups of the planar Cremona group. Preprint (February 2013), http://www.normalesup.org/~cornulier/crelin.pdf

  11. Y. Cornulier, Sofic profile and computability of Cremona groups (May 2013) [arXiv:1305.0993]

    Google Scholar 

  12. M.J. Collins, On Jordan’s theorem for complex linear groups. J. Group Theory 10, 411–423 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Wiley, New York, 1962)

    MATH  Google Scholar 

  14. M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. 3(4), 507–588 (1970)

    MATH  MathSciNet  Google Scholar 

  15. I. Dolgachev, Infinite Coxeter groups and automorphisms of algebraic surfaces. Contemp. Math. 58(Part 1), 91–106 (1986)

    Google Scholar 

  16. I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, in Algebra, Arithmetic, and Geometry In Honor of Yu.I. Manin. Progress in Mathematics, vol. 269 (Birkhäuser, Boston, 2009), pp. 443–548

    Google Scholar 

  17. D. Fisher, Groups acting on manifolds: around the Zimmer program, in Geometry, Rigidity, and Group Actions. Chicago Lectures in Mathematics (University of Chicago Press, Chicago, 2011), pp. 72–157

    Google Scholar 

  18. W. Fulton, Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131 (Princeton University Press, Princeton, 1993)

    Google Scholar 

  19. B. Huppert, Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, vol. 25 (Walter de Gruyter, Berlin, 1998)

    Google Scholar 

  20. T. Igarashi, Finite Subgroups of the Automorphism Group of the Affine Plane. M.A. thesis, Osaka University, 1977

    Google Scholar 

  21. V.A. Iskovskikh, Two non-conjugate embeddings of \(\mathrm{Sym}_{3} \times \mathbb{Z}_{2}\) into the Cremona group. Proc. Steklov Inst. Math. 241, 93–97 (2003)

    MathSciNet  Google Scholar 

  22. V.A. Iskovskikh, I.R. Shafarevich, Algebraic surfaces, in Algebraic Geometry, II. Encyclopaedia of Mathematical Sciences, vol. 35 (Springer, Berlin, 1996), pp. 127–262

    Google Scholar 

  23. C. Jordan, Mémoire sur les equations différentielle linéaire à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)

    Article  Google Scholar 

  24. J. Kollár, Y. Miyaoka, S. Mori, H. Takagi, Boundedness of canonical \(\mathbb{Q}\)-Fano 3-folds. Proc. Jpn. Acad. Ser. A Math. Sci. 76, 73–77 (2000)

    Article  MATH  Google Scholar 

  25. S. Kwasik, R. Schultz, Finite symmetries of \(\mathbb{R}^{4}\) and S 4. Preprint (2012)

    Google Scholar 

  26. S. Lang, Algebra (Addison-Wesley, Reading, 1965)

    MATH  Google Scholar 

  27. N. Lemire, V. Popov, Z. Reichstein, Cayley groups. J. Am. Math. Soc. 19(4), 921–967 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. N. Lemire, V. Popov, Z. Reichstein, On the Cayley degree of an algebraic group, in Proceedings of the XVIth Latin American Algebra Colloquium. Bibl. Rev. Mat. Iberoamericana, Rev. Mat. (Iberoamericana, Madrid, 2007), pp. 87–97

    Google Scholar 

  29. M. Maruyama, On automorphisms of ruled surfaces. J. Math. Kyoto Univ. 11-1, 89–112 (1971)

    MathSciNet  Google Scholar 

  30. H. Matsumura, On algebraic groups of birational tansformations. Rend. Accad. Naz. Lincei Ser. VIII 34, 151–155 (1963)

    MATH  MathSciNet  Google Scholar 

  31. T. Matsusaka, Polarized varieties, fields of moduli and generalized Kummer varieties of polarized varieties. Am. J. Math. 80, 45–82 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  32. W.H. Meeks, Sh.-T. Yau, Group actions on \(\mathbb{R}^{3}\), in The Smith Conjecture (New York, 1979). Pure Appl. Math., vol. 112 (Academic, Orlando, 1984), pp. 167–179

    Google Scholar 

  33. L. Moser-Jauslin, Automorphism groups of Koras–Russell threefolds of the first kind, in Affine Algebraic Geometry. CRM Proceedings and Lecture Notes, vol. 54 (American Mathematical Society, Providence, 2011), pp. 261–270

    Google Scholar 

  34. G. Mostow, Fully reducible subgroups of algebraic groups. Am. J. Math. 78, 200–221 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  35. I. Mundet i Riera, Jordan’s theorem for the diffeomorphism group of some manifolds. Proc. Am. Math. Soc. 138(6), 2253–2262 (2010)

    Google Scholar 

  36. I. Mundet i Riera, Letter of July 30, 2013 to V.L. Popov

    Google Scholar 

  37. I. Mundet i Riera, Letters of October 30 and 31, 2013 to V.L. Popov

    Google Scholar 

  38. I. Mundet i Riera, Finite Group Actions on Manifolds Without Odd Cohomology (November 2013) [arXiv:1310.6565v2]

    Google Scholar 

  39. T. Oda, Covex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Bd. 15 (Springer, Berlin, 1988)

    Google Scholar 

  40. A.Yu. Olshanskii, Groups of bounded period with subgroups of prime order. Algebra Logic 21, 369–418 (1983) [Translation of Algebra i Logika 21, 553–618 (1982)]

    Google Scholar 

  41. A.Yu. Ol’shanskiǐ, Letters of August 15 and 23, 2013 to V.L. Popov

    Google Scholar 

  42. V.L. Popov, Algebraic curves with an infinite automorphism group. Math. Notes 23, 102–108 (1978)

    Article  MATH  Google Scholar 

  43. V.L. Popov, On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties, in Affine Algebraic Geometry: The Russell Festschrift. CRM Proceedings and Lecture Notes, vol. 54 (American Mathematical Society, Providence, 2011), pp. 289–311 (January 2010) [arXiv:1001.1311]

    Google Scholar 

  44. V.L. Popov, Some subgroups of the Cremona groups, in Affine Algebraic Geometry. Proceedings (Osaka, Japan, 3–6 March 2011) (World Scientific, Singapore, 2013), pp. 213–242 (October 2011) [arXiv:1110.2410]

    Google Scholar 

  45. V.L. Popov, Tori in the Cremona groups. Izvestiya Math. 77(4), 742–771 (2013) (July 2012) [arXiv:1207.5205]

    Google Scholar 

  46. V.L. Popov, Problems for the Problem Session (CIRM, Trento) (November 2012), http://www.science.unitn.it/cirm/Trento_postersession.html

  47. V.L. Popov, Finite Subgroups of Diffeomorphism Groups (October 2013) [arXiv:1310.6548]

    Google Scholar 

  48. V.L. Popov, E.B. Vinberg, Invariant theory, in Algebraic Geometry IV. Encyclopaedia of Mathematical Sciences, vol. 55 (Springer, Berlin, 1994), pp. 123–284

    Google Scholar 

  49. Y. Prokhorov, C. Shramov, Jordan Property for Cremona Groups (June 2013) [arXiv:1211.3563]

    Google Scholar 

  50. Y. Prokhorov, C. Shramov, Jordan Property for Groups of Birational Selfmaps (July 2013) [arXiv:1307.1784]

    Google Scholar 

  51. V. Puppe, Do manifolds have little symmetry? J. Fixed Point Theory Appl. 2(1), 85–96 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Z. Reichstein, On the notion of essential dimension for algebraic groups. Transform. Gr. 5(3), 265–304 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Z. Reichstein, Compression of group actions, in Invariant Theory in All Characteristics. CRM Proceedings and Lecture Notes, vol. 35 (Amererican Mathematical Society, Providence, 2004), pp. 199–202

    Google Scholar 

  54. Z. Reichstein, B. Youssin, A birational invariant for algebraic group actions. Pac. J. Math. 204, 223–246 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. M. Rosenlicht, Some basic theorems on algebraic groups. Am. J. Math. 78, 401–443 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  56. M. Rosenlicht, Some rationality questions on algebraic groups. Ann. Mat. Pura Appl. 43(4), 25–50 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  57. J.-P. Serre, Sous-groupes finis des groupes de Lie, in Séminaire N. Bourbaki 1998∕–99, Exp. no. 864. Astérisque, vol. 266 (Société Mathématique de France, Paris, 2000), pp. 415–430

    Google Scholar 

  58. J.-P. Serre, Le groupe de Cremona et ses sous-groupes finis. Séminaire Bourbaki, no. 1000, Novembre 2008, 24 pp.

    Google Scholar 

  59. J.-P. Serre, A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. Moscow Math. J. 9(1), 183–198 (2009)

    MATH  Google Scholar 

  60. J.-P. Serre, How to use finite fields for problems concerning infinite fields. Contemp. Math. 487, 183–193 (2009)

    Article  Google Scholar 

  61. T.A. Springer, Linear Algebraic Groups, 2nd edn. Progress in Mathematics, vol. 9 (Birkhäuser, Boston, 1998)

    Google Scholar 

  62. Y.G. Zarhin, Theta groups and products of abelian and rational varieties. Proc. Edinb. Math. Soc. (2) 57(1), 299–304 (2014) [arXiv:1006.1112]

    Google Scholar 

Download references

Acknowledgements

Supported by grants , , and the programme Contemporary Problems of Theoretical Mathematics of the Branch of Mathematics in the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Popov, V.L. (2014). Jordan Groups and Automorphism Groups of Algebraic Varieties. In: Cheltsov, I., Ciliberto, C., Flenner, H., McKernan, J., Prokhorov, Y., Zaidenberg, M. (eds) Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-05681-4_11

Download citation

Publish with us

Policies and ethics