Skip to main content

Discrete Ladders for Parallel Transport in Transformation Groups with an Affine Connection Structure

  • Chapter
  • First Online:
Geometric Theory of Information

Part of the book series: Signals and Communication Technology ((SCT))

  • 1754 Accesses

Abstract

The analysis of complex information in medical imaging and in computer vision often requires to represent data in suitable manifolds. In this scenario we are interested in studying the mathematical relationship between objects belonging to the same geometrical space, for instance by calculating trajectories, distances, and statistical modes. An important example can be found in computational anatomy, in which we aim at developing statistical models for the study of the anatomical variability of organs and tissues. In particular, temporal evolutions of anatomies can be modeled by transformations of the space represented by trajectories of diffeomorphisms. Reliable methods for comparing different trajectories are thus required in order to develop population-based models. In this chapter we provide fundamental notions of finite-dimensional Lie Groups and Riemannian geometry which are the basis of the classical continuous parallel transport methods. We introduce then the Schild’s ladder, an efficient and simple method proposed in theoretical Physics for the parallel transport of vectors along geodesics paths by iterative construction of infinitesimal geodesics parallelograms on the manifolds. Schild’s ladder may be however inefficient for transporting longitudinal deformations from image time series of multiple time points, in which the computation of the geodesic diagonals is required several times. We propose therefore a new parallel transport method based on the Schild’s ladder, the “pole ladder”, in which the computation of geodesics diagonals is minimized. These theoretical concepts are then contextualized and discussed in the applicative setting of diffeomorphic image registration, and applied to the very practical problem of statistical analysis of the group-wise longitudinal brain changes in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardekani, S., Weiss, R.G., Lardo, A.C., George, R.T., Lima, J.A.C., Wu, K.C., Miller, M.I., Winslow, R.L., Younes, L.: Cardiac motion analysis in ischemic and non-ischemic cardiomyopathy using parallel transport. In: Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro, ISBI’09, pp. 899–902. IEEE Press, Piscataway (2009)

    Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, New York (1989)

    Google Scholar 

  3. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention - MICCAI, vol. 9, pp. 924–931. Springer, Heidelberg (2006)

    Google Scholar 

  4. Ashburner, J., Ridgway, G.R.: Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6, (2012)

    Google Scholar 

  5. Ashburner, J., Friston, K.J.: Voxel-based morphometry—the methods. NeuroImage 11, 805–21 (2000)

    Article  Google Scholar 

  6. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38(1), 95–113 (2007)

    Article  Google Scholar 

  7. Avants, B., Anderson, C., Grossman, M., Gee, J.: Spatiotemporal normalization for longitudinal analysis of gray matter atrophy in frontotemporal dementia. In Ayache, N., Ourselin, S., Maeder, A. (eds.) Medical Image Computing and Computer-Assisted Intervention, MICCAI, pp. 303–310. Springer, Heidelberg (2007)

    Google Scholar 

  8. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Google Scholar 

  9. Bossa, M., Hernandez, M., Olmos, S.: Contributions to 3d diffeomorphic atlas estimation: application to brain images. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention- MICCAI, vol. 10, pp. 667–74 (2007)

    Google Scholar 

  10. Bossa, M.N., Zacur, E., Olmos, S.: On changing coordinate systems for longitudinal tensor-based morphometry. In: Proceedings of Spatio Temporal Image Analysis Workshop (STIA), (2010)

    Google Scholar 

  11. Cartan, E., Schouten, J.A.: On the geometry of the group-manifold of simple and semi-simple groups. Proc. Akad. Wekensch (Amsterdam) 29, 803–815 (1926)

    Google Scholar 

  12. Charpiat, G.: Learning shape metrics based on deformations and transport. In: Second Workshop on Non-Rigid Shape Analysis and Deformable Image Alignment, Kyoto, Japon (2009)

    Google Scholar 

  13. Chetelat, G., Landeau, B., Eustache, F., Mezenge, F., Viader, F., de la Sayette, V., Desgranges, B., Baron, J.-C.: Using voxel-based morphometry to map the structural changes associated with rapid conversion to mci. NeuroImage 27, 934–46 (2005)

    Article  Google Scholar 

  14. Thompson, D.W.: On growth and form by D’Arcy Wentworth Thompson. University Press, Cambridge (1945)

    Google Scholar 

  15. Davis, B.C., Fletcher, P.T., Bullit, E., Joshi, S.: Population shape regression from random design data. In: ICCV vol.4, pp. 375–405 (2007)

    Google Scholar 

  16. do Carmo, M.P.: Riemannian Geometry. Mathematics. Birkhäuser, Boston, Basel, Berlin (1992)

    Google Scholar 

  17. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, vol. 12, pp. 297–304 (2009)

    Google Scholar 

  18. Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces. Academic Press, New York (1978)

    Google Scholar 

  19. Hernandez, M., Bossa, M., Olmos, S.: Registration of anatomical images using paths of diffeomorphisms parameterized with stationary vector field flows. Int. J. Comput. Vis. 85, 291–306 (2009)

    Article  Google Scholar 

  20. Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., Trojanowski, J.Q.: Hypothetical model of dynamic biomarkers of the alzheimer’s pathological cascade. Lancet Neurol. 9, 119–28 (2010)

    Article  Google Scholar 

  21. Joshi, S., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process. 9(8), 1357–70 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Khesin, B.A., Wendt, R.: The Geometry of Infinite Dimensional Lie groups, volume 51 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics. Springer (2009)

    Google Scholar 

  23. Kheyfets, A., Miller, W., Newton, G.: Schild’s ladder parallel transport for an arbitrary connection. Int. J. Theoret. Phys. 39(12), 41–56 (2000)

    Article  MathSciNet  Google Scholar 

  24. Kolev, B.: Groupes de Lie et mécanique. http://www.cmi.univ-mrs.fr/kolev/. Notes of a Master course in 2006–2007 at Université de Provence (2007)

  25. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: Lcc-demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 1(81), 470–83 (2013)

    Google Scholar 

  26. Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: Mapping the effects of A\(\beta _{1-42}\) levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 663–670, (2011)

    Google Scholar 

  27. Lorenzi, M., Pennec, X.: Efficient parallel transport of deformations in time series of images: from Schild’s to pole ladder. J. Math. Imaging Vis. (2013) (Published online)

    Google Scholar 

  28. Lorenzi, M., Pennec, X.: Geodesics, parallel transport and one-parameter subgroups for diffeomorphic image registration. Int. J. Comput. Vis.—IJCV 105(2), 111–127 (2012)

    Google Scholar 

  29. Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. Inf. Process. Med. Imaging—IPMI 22, 463–74 (2011)

    Google Scholar 

  30. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity, Groups and Topology, pp. 1009–1057. Elsevier Science Publishers, Les Houches (1984)

    Google Scholar 

  31. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Compagny , San Francisco, California (1973)

    Google Scholar 

  32. Modat, M., Ridgway, G.R., Daga, P., Cardoso, M.J., Hawkes, D.J., Ashburner, J., Ourselin, S.: Log-Euclidean free-form deformation. In: Proceedings of SPIE Medical Imaging 2011. SPIE, (2011)

    Google Scholar 

  33. Pennec, X., Arsigny, V.: Exponential barycenters of the canonical cartan connection and invariant means on Lie groups. In: Barbaresco, F., Mishra, A., Nielsen, F. (eds.) Matrix Information Geometry. Springer, Heidelberg (2012)

    Google Scholar 

  34. Postnikov, M.M.: Geometry VI: Riemannian Geometry. Encyclopedia of mathematical science. Springer, Berlin (2001)

    Book  Google Scholar 

  35. Qiu, A., Younes, L., Miller, M., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguish the time-dependent pattern of hippocampal surface deformation due to healthy aging and dementia of the Alzheimer’s type. NeuroImage, 40(1):68–76 (2008)

    Google Scholar 

  36. Qiu, A., Albert, M., Younes, L., Miller, M.: Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes. NeuroImage 45(1), S51–60 (2009)

    Article  Google Scholar 

  37. Rao, A., Chandrashekara, R., Sanchez-Hortiz, G., Mohiaddin, R., Aljabar, P., Hajnal, J., Puri, B., Rueckert, D.: Spatial trasformation of motion and deformation fields using nonrigid registration. IEEE Trans. Med. Imaging 23(9), 1065–76 (2004)

    Article  Google Scholar 

  38. Riddle, W.R., Li, R., Fitzpatrick, J.M., DonLevy, S.C., Dawant, B.M., Price, R.R.: Characterizing changes in mr images with color-coded jacobians. Magn. Reson. Imaging 22(6), 769–77 (2004)

    Article  Google Scholar 

  39. Schild, A.: Tearing geometry to pieces: More on conformal geometry. unpublished lecture at Jan 19 1970 Princeton University relativity seminar (1970)

    Google Scholar 

  40. Schmid, R.: Infinite dimensional lie groups with applications to mathematical physics. J. Geom. Symmetry Phys. 1, 1–67 (2004)

    Google Scholar 

  41. Schmid, R.: Infinite-dimensional lie groups and algebras in mathematical physics. Adv. Math. Phys. 2010, 1–36 (2010)

    Article  Google Scholar 

  42. Subbarao, R.: Robust Statistics Over Riemannian Manifolds for Computer Vision. Graduate School New Brunswick, Rutgers The State University of New Jersey, New Brunswick, (2008)

    Google Scholar 

  43. Thompson, P., Ayashi, K.M., Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J., Herman, D., Hong, M.S., Dittmer, S.S., Dodrell, D.M., Toga, A.W.: Dynamics of gray matter loss in alzheimer’s disease. J. Neurosci. 23(3), 994–1005 (2003)

    Google Scholar 

  44. Trouvé, A.: Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vis. 28(3), 213–21 (1998)

    Article  Google Scholar 

  45. Twining, C., Marsland, S., Taylor, C.: Metrics, connections, and correspondence: the setting for groupwise shape analysis. In: Proceedings of the 8th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR’11, pp. 399–412. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  46. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Symmetric log-domain diffeomorphic registration: a demons-based approach. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI. Lecture Notes in Computer Science, vol. 5241, pp. 754–761. Springer, Heidelberg (2008)

    Google Scholar 

  47. Wei, D., Lin, D., Fisher, J.: Learning deformations with parallel transport. In: ECCV, pp. 287–300 (2012)

    Google Scholar 

  48. Younes, L.: Shapes and diffeomorphisms. Number 171 in Applied Mathematical Sciences. Springer, Berlin (2010)

    Google Scholar 

  49. Younes L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. pp. 113–134 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Lorenzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lorenzi, M., Pennec, X. (2014). Discrete Ladders for Parallel Transport in Transformation Groups with an Affine Connection Structure. In: Nielsen, F. (eds) Geometric Theory of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05317-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05317-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05316-5

  • Online ISBN: 978-3-319-05317-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics