Skip to main content

Hessian Structures and Divergence Functions on Deformed Exponential Families

  • Chapter
  • First Online:
Geometric Theory of Information

Abstract

A Hessian structure \((\nabla , h)\) on a manifold is a pair of a flat affine connection \(\nabla \) and a semi-Riemannian metric \(h\) which is given by a Hessian of some function. In information geometry, it is known that an exponential family naturally has dualistic Hessian structures and their canonical divergences coincide with the Kullback-Leibler divergences, which are also called the relative entropies. A deformed exponential family is a generalization of exponential families. A deformed exponential family naturally has two kinds of dualistic Hessian structures and conformal structures of Hessian metrics. In this paper, geometry of such Hessian structures and conformal structures are summarized. In addition, divergence functions on these Hessian manifolds are constructed from the viewpoint of estimating functions. As an application of such Hessian structures to statistics, a generalization of independence and geometry of generalized maximum likelihood method are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S., Nagaoka, H.: Method of Information Geometry. American Mathematical Society, Providence, Oxford University Press, Oxford (2000)

    Google Scholar 

  2. Amari, S., Ohara, A.: Geometry of q-exponential family of probability distributions. Entropy 13, 1170–1185 (2011)

    Article  MathSciNet  Google Scholar 

  3. Amari, S., Ohara, A., Matsuzoe, H.: Geometry of deformed exponential families: invariant, dually-flat and conformal geometry. Phys. A. 391, 4308–4319 (2012)

    Article  MathSciNet  Google Scholar 

  4. Barondorff-Nielsen, O.E., Jupp, P.E.: Statistics, yokes and symplectic geometry. Ann. Facul. Sci. Toulouse 6, 389–427 (1997)

    Article  Google Scholar 

  5. Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85, 549–559 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borgesa, E.P.: A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Phys. A 340, 95–101 (2004)

    Article  MathSciNet  Google Scholar 

  7. Eguchi, S.: Geometry of minimum contrast. Hiroshima Math. J. 22, 631–647 (1992)

    MATH  MathSciNet  Google Scholar 

  8. Fujimoto, Y., Murata, N.: A generalization of independence in naive bayes model. Lect. Notes Comp. Sci. 6283, 153–161 (2010)

    Article  Google Scholar 

  9. Fujimoto Y., Murata N.: A generalisation of independence in statistical models for categorical distribution. Int. J. Data Min. Model. Manage. 2(4), 172–187 (2012)

    Google Scholar 

  10. Ivanov, S.: On dual-projectively flat affine connections. J. Geom. 53, 89–99 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kumon, M., Takemura, A., Takeuchi, K.: Conformal geometry of statistical manifold with application to sequential estimation. Sequential Anal. 30, 308–337 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tôhoku Math. J. 46, 427–433 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kurose, T.: Conformal-projective geometry of statistical manifolds. Interdiscip. Inform. Sci. 8, 89–100 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Lauritzen, S. L.: Statistical Manifolds, Differential Geometry in Statistical Inferences, IMS Lecture Notes Monograph Series, vol. 10, pp. 96–163. Hayward, California (1987)

    Google Scholar 

  15. Matsuzoe, H.: Geometry of contrast functions and conformal geometry. Hiroshima Math. J. 29, 175–191 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Matsuzoe, H.: Geometry of statistical manifolds and its generalization. In: Proceedings of the 8th International Workshop on Complex Structures and Vector Fields, pp. 244–251. World Scientific, Singapore (2007)

    Google Scholar 

  17. Matsuzoe, H.: Computational geometry from the viewpoint of affine differential geometry. Lect. Notes Comp. Sci. 5416, 103–113 (2009)

    Article  Google Scholar 

  18. Matsuzoe, H.: Statistical manifolds and geometry of estimating functions, pp. 187–202. Recent Progress in Differential Geometry and Its Related Fields World Scientific, Singapore (2013)

    Google Scholar 

  19. Matsuzoe, H., Henmi, M.: Hessian structures on deformed exponential families. Lect. Notes Comp. Sci. 8085, 275–282 (2013)

    Article  Google Scholar 

  20. Matsuzoe, H., Ohara, A.: Geometry for \(q\)-exponential families. In: Recent progress in differential geometry and its related fields, pp. 55–71. World Scientific, Singapore (2011)

    Google Scholar 

  21. Murata, N., Takenouchi, T., Kanamori, T., Eguchi, S.: Information geometry of u-boost and bregman divergence. Neural Comput. 16, 1437–1481 (2004)

    Article  MATH  Google Scholar 

  22. Naudts, J.: Estimators, escort probabilities, and \(\phi \)-exponential families in statistical physics. J. Ineq. Pure Appl. Math. 5, 102 (2004)

    Google Scholar 

  23. Naudts, J.: Generalised Thermostatistics, Springer, New York (2011)

    Google Scholar 

  24. Ohara, A.: Geometric study for the legendre duality of generalized entropies and its application to the porous medium equation. Euro. Phys. J. B. 70, 15–28 (2009)

    Article  MATH  Google Scholar 

  25. Ohara, A., Matsuzoe H., Amari S.: Conformal geometry of escort probability and its applications. Mod. Phys. Lett. B. 10, 26:1250063 (2012)

    Google Scholar 

  26. Ohara A., Wada, T.: Information geometry of q-Gaussian densities and behaviors of solutions to related diffusion equations. J. Phys. A: Math. Theor. 43, 035002 (2010)

    Google Scholar 

  27. Okamoto, I., Amari, S., Takeuchi, K.: Asymptotic theory of sequential estimation procedures for curved exponential families. Ann. Stat. 19, 961–961 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shima, H.: The Geometry of Hessian Structures, World Scientific, Singapore (2007)

    Google Scholar 

  29. Suyari, H., Tsukada, M.: Law of error in tsallis statistics. IEEE Trans. Inform. Theory 51, 753–757 (2005)

    Article  MathSciNet  Google Scholar 

  30. Takatsu, A.: Behaviors of \(\varphi \)-exponential distributions in wasserstein geometry and an evolution equation. SIAM J. Math. Anal. 45, 2546–2546 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tanaka, M.: Meaning of an escort distribution and \(\tau \)-transformation. J. Phys.: Conf. Ser. 201, 012007 (2010)

    Google Scholar 

  32. Tsallis, C.: Possible generalization of boltzmann—gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer, New York (2009)

    Google Scholar 

  34. Vigelis, R.F., Cavalcante, C.C.: On \(\phi \)-families of probability distributions. J. Theor. Probab. 21, 1–25 (2011)

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous reviewers for constructive comments for preparation of this paper. The first named author is partially supported by JSPS KAKENHI Grant Number 23740047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Matsuzoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matsuzoe, H., Henmi, M. (2014). Hessian Structures and Divergence Functions on Deformed Exponential Families. In: Nielsen, F. (eds) Geometric Theory of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05317-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05317-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05316-5

  • Online ISBN: 978-3-319-05317-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics