Skip to main content

Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation

  • Chapter
  • First Online:
Geometric Theory of Information

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Mathematical morphology is a nonlinear image processing methodology based on the application of complete lattice theory to spatial structures. Let us consider an image model where at each pixel is given a univariate Gaussian distribution. This model is interesting to represent for each pixel the measured mean intensity as well as the variance (or uncertainty) for such measurement. The aim of this work is to formulate morphological operators for these images by embedding Gaussian distribution pixel values on the Poincaré upper-half plane. More precisely, it is explored how to endow this classical hyperbolic space with various families of partial orderings which lead to a complete lattice structure. Properties of order invariance are explored and application to morphological processing of univariate Gaussian distribution-valued images is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angulo, J., Velasco-Forero, S.: Complete lattice structure of Poincaré upper-half plane and mathematical morphology for hyperbolic-valued images. In: Nielsen, F., Barbaresco, F. (eds.) Proceedings of First International Conference Geometric Science of Information (GSI’2013), vol. 8085, pp. 535–542. Springer LNCS (2013)

    Google Scholar 

  2. Arnaudon, M., Nielsen, F.: On approximating the riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amari, S.-I., Barndorff-Nielsen, O.E., Kass, R.E., Lauritzen, S.L., Rao, C.R.: Differential geometry in statistical inference. Lecture Notes-Monograph Series, vol. 10, pp. 19–94, Institute of Mathematical Statistics, Hayward (1987)

    Google Scholar 

  4. Amari, S.-I., Nagaoka, H.: Methods of information geometry, translations of mathematical monographs. Am. Math. Soc. 191, (2000)

    Google Scholar 

  5. Barbaresco, F.: Interactions between symmetric cone and information geometries: Bruhat-Tits and siegel spaces models for high resolution autoregressive doppler imagery. In: Nielsen, F. (eds.) Emerging Trends in Visual Computing (ETCV’08), Springer LNCS, Heidelberg vol. 5416, pp. 124–163, (2009)

    Google Scholar 

  6. Barbaresco, F.: Geometric radar processing based on Fréchet distance: information geometry versus optimal transport theory. In: Proceedings of IEEE International Radar Symposium (IRS’2011), pp. 663–668 (2011)

    Google Scholar 

  7. Barbaresco, F.: Information geometry of covariance matrix: cartan-siegel homogeneous bounded domains, Mostow/Berger fibration and fréchet median. In: Nielsen, F., Bhatia, R. (eds.) Matrix Information Geometry, pp. 199–255, Springer, Heidelberg (2013)

    Google Scholar 

  8. Bădoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the Fourteenth annual ACM-SIAM Symposium on Discrete Algorithms (SIAM), pp. 801–802, ACM, New York(2003)

    Google Scholar 

  9. Burbea, J., Rao, C.R.: Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J. Multivar. Anal. 12(4), 575–96 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cǎliman, A., Ivanovici, M., Richard, N.: Probabilistic pseudo-morphology for grayscale and color images. Pattern Recogn. 47, 721–35 (2004)

    Article  Google Scholar 

  11. Cammarota, V., Orsingher, E.: Travelling randomly on the poincaré half-plane with a pythagorean compass. J. Stat. Phys. 130(3), 455–82 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R.: Hyperbolic geometry. Flavors of Geometry, vol. 31, MSRI Publications, Cambridge (1997)

    Google Scholar 

  13. Chossat, P., Faugeras, O.: Hyperbolic planforms in relation to visual edges and textures perception. PLoS Comput. Biol. 5(12), p1 (2009)

    MathSciNet  Google Scholar 

  14. Costa, S.I.R., Santos, S.A., Strapasson, J.E.: Fisher information matrix and hyperbolic geometry. In: Proc. of IEEE ISOC ITW2005 on Coding and Complexity, pp. 34–36, (2005)

    Google Scholar 

  15. Costa, S.I.R., Santos, S.A., Strapasson, J.E.: Fisher information distance: a geometrical reading, arXiv:1210:2354v1, p. 15 (2012)

    Google Scholar 

  16. Dodson, C.T.J., Matsuzoe, H.: An affine embedding of the gamma manifold. Appl. Sci. 5(1), 7–12 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Frontera-Pons, J., Angulo, J.: Morphological operators for images valued on the sphere. In: Proceedings of IEEE ICIP’12 ( IEEE International Conference on Image Processing), pp. 113–116, Orlando (Florida), USA, October (2012)

    Google Scholar 

  18. Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon, Oxford (1963)

    Google Scholar 

  19. Guts, A.K.: Mappings of families of oricycles in lobachevsky space. Math. USSR-Sb. 19, 131–8 (1973)

    Article  Google Scholar 

  20. Guts, A.K.: Mappings of an ordered lobachevsky space. Siberian Math. J. 27(3), 347–61 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  22. Heijmans, H.J.A.M., Keshet, R.: Inf-semilattice approach to self-dual morphology. J. Math. Imaging Vis. 17(1), 55–80 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Keshet, R.: Mathematical morphology on complete semilattices and its applications to image processing. Fundamenta Informaticæ 41, 33–56 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Meyer, F.: Vectorial Levelings and Flattenings. In: Mathematical Morphology and its Applications to Image and Signal Processing (Proc. of ISMM’02), pp. 51–60, Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  25. Nielsen, F., Nock, R.: On the smallest enclosing information disk. Inform. Process. Lett. 105, 93–7 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Nielsen, F., Nock. R.: Hyperbolic voronoi diagrams made easy. In: Proceedings of the 2010 IEEE International Conference on Computational Science and Its Applications, pp. 74–80, IEEE Computer Society, Washington (2010)

    Google Scholar 

  27. Sachs, Z.: Classification of the isometries of the upper half-plane, p. 14. University of Chicago, VIGRE REU (2011)

    Google Scholar 

  28. Sbaiz, L., Yang, F., Charbon, E., Süsstrunk, S., Vetterli, M.: The gigavision camera. In: Proceedings of IEEE ICASSP’09, pp. 1093–1096 (2009)

    Google Scholar 

  29. Serra, J.: Image Analysis and Mathematical Morphology. Vol II: theoretical advances, Academic Press, London (1988)

    Google Scholar 

  30. Shaked, M., Shanthikumar, G.: Stochastic Orders and Their Applications. Associated Press, New York (1994)

    MATH  Google Scholar 

  31. Soille, P.: Morphological Image Analysis. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  32. Treibergs, A.: The hyperbolic plane and its immersions into \(\mathbb{R}^3\), Lecture Notes in Department of Mathematics, p. 13. University of Utah (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Angulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angulo, J., Velasco-Forero, S. (2014). Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation. In: Nielsen, F. (eds) Geometric Theory of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-05317-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05317-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05316-5

  • Online ISBN: 978-3-319-05317-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics