Skip to main content

Optimal Control-Based Feedback Stabilization of Multi-field Flow Problems

  • Chapter
  • First Online:

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 165))

Abstract

We discuss the numerical solution of the feedback stabilization problem for multi-field flow problems. Our approach is based on an analytical Riccati feedback concept derived by Raymond which allows to steer a perturbed flow back to its desired state, assumed to be a stationary, possibly unstable, flow profile. This concept, originally derived for incompressible flow fields described by the Navier-Stokes equations, uses a linear-quadratic regulator (LQR) approach for the linearized Navier-Stokes equations formulated on the space of divergence-free velocity fields. We extend this approach to a setting where the Navier-Stokes equations are coupled to a diffusion-convection equation describing the transport of a reactive species in a fluid. The stabilizing feedback control resulting from the LQR problem is obtained via solving the associated operator Riccati equation. We describe a numerical procedure to solve this Riccati equation numerically. This involves several technical difficulties on the algebraic level that we address in this report. We illustrate the performance of our method by a numerical example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L. Amodei, J.-M. Buchot, A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation. Numer. Lin. Alg. Appl. 19, 700–727 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181–191 (1991)

    Article  MATH  Google Scholar 

  3. E. Bänsch, Simulation of instationary, incompressible flows. Acta Math. Univ. Comenianae 67, 101–114 (1998)

    MATH  Google Scholar 

  4. E. Bänsch, P. Benner, Stabilization of incompressible flow problems by Riccati-based feedback, in Constrained Optimization and Optimal Control for Partial Differential Equations, ed. by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. Ulbrich. Vol. 160 of International Series of Numerical Mathematics (Birkhäuser, Basel, 2012), pp. 5–20

    Google Scholar 

  5. E. Bänsch, P. Benner, J. Saak, H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flow, Preprint SPP1253-154, DFG-SPP1253, 2013. http://www.am.uni-erlangen.de/home/spp1253/wiki/images/b/ba/Preprint-SPP1253-154.pdf

  6. P. Benner, J.-R. Li, T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Lin. Alg. Appl. 15, 755–777 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Benner, J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM Mitteilungen 36, 32–52 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Benner, J. Saak, M. Stoll, H. K. Weichelt, Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible Stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Benner, T. Stykel, Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52(2), 581–600 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. K. A. Cliffe, T. J. Garratt, A. Spence, Eigenvalues of block matrices arising from problems in fluid mechanics. SIAM J. Matrix Anal. Appl. 15, 1310–1318 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Feitzinger, T. Hylla, E. W. Sachs, Inexact Kleinman-Newton method for Riccati equations. SIAM J. Matrix Anal. Appl. 31, 272–288 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Heinkenschloss, D. C. Sorensen, K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J. Sci. Comput. 30, 1038–1063 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Hinze, K. Kunisch, Second order methods for boundary control of the instationary Navier-Stokes system. Z. Angew. Math. Mech. 84, 171–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Hood, C. Taylor, Navier-Stokes equations using mixed interpolation, in Finite Element Methods in Flow Problems, ed. by J. T. Oden, R. H. Gallagher, C. Taylor, O. C. Zienkiewicz (University of Alabama in Huntsville Press, Huntsville, 1974), pp. 121–132

    Google Scholar 

  15. P. Kunkel, V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. Textbooks in Mathematics (EMS Publishing House, Zürich, 2006)

    Google Scholar 

  16. T. Penzl, LYAPACK users guide, Tech. Report SFB393/00-33, Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern, TU Chemnitz, 09107 Chemnitz, 2000. Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html

  17. J.-P. Raymond, Local boundary feedback stabilization of the Navier-Stokes equations, in Control Systems: Theory, Numerics and Applications, Rome, 30 March–1 April 2005, Proceedings of Science, SISSA, http://pos.sissa.it, 2005

  18. J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations. SIAM J. Control Optim. 45, 790–828 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Weickert, Navier-Stokes equations as a differential-algebraic system, Preprint SFB393/96-08, Preprint Series of the SFB 393 “Numerische Simulation auf massiv parallelen Rechnern”, Chemnitz University of Technology, Aug 1996

    Google Scholar 

Download references

Acknowledgements

We would like to thank Stephan Weller for his helpful advices regarding the handling of the FEM software NAVIER and René Schneider for many useful discussion throughout the whole project time. In addition, we would like to thank Martin Stoll, Andy Wathen, Matthias Heinkenschloss, and Jan Heiland for various discussions that extended our knowledge about optimal control for fluid mechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko K. Weichelt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bänsch, E., Benner, P., Saak, J., Weichelt, H.K. (2014). Optimal Control-Based Feedback Stabilization of Multi-field Flow Problems. In: Leugering, G., et al. Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol 165. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-05083-6_11

Download citation

Publish with us

Policies and ethics