Skip to main content

The Basal Ganglia Underpinning of Cognitive Control: The Fronto-Striatal System

  • Chapter
  • First Online:
The Myth of Executive Functioning

Part of the book series: SpringerBriefs in Neuroscience ((TVOBTP))

  • 1775 Accesses

Abstract

The organization of the cortex includes widespread connections with the basal ganglia. The basal ganglia are a group of subcortical nuclei that are bilaterally represented within the brain. These nuclei consist of the striatum (a general term that includes the caudate, the putamen, and the ventral striatum/nucleus accumbens), the globus pallidus (which is divided into two separate compartments called the external and internal segments), and the subthalamic nucleus and substantia nigra (which can be further divided into the substantia nigra pars reticulata and the substantia nigra pars compacta). The striatum is divided and referred to by its dorsal and ventral components; the subdivisions of the globus pallidus are referred to as the Gpe and Gpi, according to its two compartments; the subthalamic nucleus is referred to as the STN, and the organization of the substantia nigra complex often follows the abbreviations SNr and SNpc. These are phylogenetically old regions of the vertebrate brain, these regions have very similar anatomic and neurochemical profiles across species, and they are believed to serve the same functions in all vertebrates [234–237]. In fact, the structure and function of the basal ganglia have been conserved over some 560 million years of evolution [238]. Therefore, the argument concerning the role of the basal ganglia presented in this paper certainly has a compelling history on its side. You simply cannot have a vertebrate brain without the basal ganglia. (This paper assumes the reader has a fundamental knowledge of the basal ganglia; reviews are provided by [1, 46, 239, 240]; the following information provides only a minimal, elementary summary of basal ganglia structure and function.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koziol, L.F. and D.E. Budding, Subcortical structures and cognition: implications for neuropsychological assessment. 2009, New York: Springer. xiii, 405 p.

    Book  Google Scholar 

  2. Koziol, L.F., D.E. Budding, and D. Chidekel, ADHD as a model of brain-behavior relationships. Springer briefs in neuroscience/the vertically organized brain in theory and practice. 2013, New York, NY: Springer.

    Book  Google Scholar 

  3. Seger, C.A. and C.M. Cincotta, Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cereb Cortex, 2006. 16(11): p. 1546-55.

    Article  PubMed  Google Scholar 

  4. Ashby, F.G. and J.M. Ennis, The role of the basal ganglia in category learning, in The psychology of learning and motivation, B.H. Ross, Editor. 2006, Elsevier: New York. p. 1-36.

    Google Scholar 

  5. Miller, R., A theory of basal ganglia and their disorders. 2008, Boca Raton: CRC Press.

    Google Scholar 

  6. Alexander, G.E., M.R. DeLong, and P.L. Strick, Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 1986. 9: p. 357-81.

    Article  PubMed  Google Scholar 

  7. Hazy, T.E., M.J. Frank, and R.C. O’reilly, Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci, 2007. 362(1485): p. 1601-13.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Hazy, T.E., M.J. Frank, and R.C. O’Reilly, Banishing the homunculus: making working memory work. Neuroscience, 2006. 139(1): p. 105-18.

    Article  PubMed  Google Scholar 

  9. Seger, C.A., The basal ganglia in human learning. Neuroscientist, 2006. 12(4): p. 285-90.

    Article  PubMed  Google Scholar 

  10. Braunlich, K. and C. Seger, The basal ganglia. Wiley Interdisciplinary Reviews: Cognitive Science, 2013. 4(2): p. 135-148.

    Google Scholar 

  11. McNab, F. and T. Klingberg, Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci, 2008. 11(1): p. 103-7.

    Article  PubMed  Google Scholar 

  12. Ullman, M.T., Contributions of memory circuits to language: the declarative/procedural model. Cognition, 2004. 92(1-2): p. 231-70.

    Article  PubMed  Google Scholar 

  13. Seger, C.A., How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev, 2008. 32(2): p. 265-78.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Frank, M.J., L.C. Seeberger, and R.C. O’reilly, By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 2004. 306(5703): p. 1940-3.

    Article  PubMed  Google Scholar 

  15. Yin, H.H., S.B. Ostlund, and B.W. Balleine, Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci, 2008. 28(8): p. 1437-48.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Middleton, F.A. and P.L. Strick, Cerebellar projections to the prefrontal cortex of the primate. J Neurosci, 2001. 21(2): p. 700-12.

    PubMed  Google Scholar 

  17. Handbook of Basal Ganglia Structure and Function, Volume 20 (Handbook of Behavioral Neuroscience), ed. H.S. Tseng and Y. Kuei. 2010, London, UK: Academic Press. 704.

    Google Scholar 

  18. Reiner, A., The conservative evolution of the vertebrate basal ganglia, in Handbook of Basal Ganglia Structure and Function, Volume 20 (Handbook of Behavioral Neuroscience), H.S. Tseng and Y. Kuei, Editors. 2010, Academic Press: London, UK. p. 29-62.

    Chapter  Google Scholar 

  19. Reiner, A., Organization of corticostriatal projection neuron types, in Handbook of Basal Ganglia Structure and Function, Volume 20 (Handbook of Behavioral Neuroscience), H.S. Tseng and Y. Kuei, Editors. 2010, Academic Press: London, UK. p. 323-340.

    Chapter  Google Scholar 

  20. Redgrave, P., T.J. Prescott, and K. Gurney, The basal ganglia: a vertebrate solution to the selection problem? Neuroscience, 1999. 89(4): p. 1009-23.

    Article  PubMed  Google Scholar 

  21. Grillner, S., B. Robertson, and M. Stephenson-Jones, The evolutionary origin of the vertebrate basal ganglia and its role in action-selection. J Physiol, 2013.

    Google Scholar 

  22. Utter, A.A. and M.A. Basso, The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev, 2008. 32(3): p. 333-42.

    Article  PubMed  Google Scholar 

  23. Middleton, F.A., Fundamental and clinical evidence for basal ganglia influences on cognition, in Mental and behavioral dysfunction in movement disorders, M.-A. Bédard, Editor. 2003, Humana Press: Totowa, N.J. p. 13-33.

    Chapter  Google Scholar 

  24. Arsalidou, M., E.G. Duerden, and M.J. Taylor, The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum Brain Mapp, 2012.

    Google Scholar 

  25. Haber, S.N., Neural circuits of reward and decision making: Integrative networks across corticobasal ganglia loops. Neural basis of motivational and cognitive control, ed. R.B. Mars, et al. 2011, Cambridge, Mass.: MIT Press. 21-36.

    Chapter  Google Scholar 

  26. Haber, S.N. and R. Calzavara, The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull, 2009. 78(2-3): p. 69-74.

    Article  PubMed  Google Scholar 

  27. Haber, S.N. and B. Knutson, The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 2010. 35(1): p. 4-26.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ashby, F.G. and J.B. O’Brien, The effects of positive versus negative feedback on information-integration category learning. Percept Psychophys, 2007. 69(6): p. 865-78.

    Article  PubMed  Google Scholar 

  29. Ashby, F.G. and J.B. O’Brien, Category learning and multiple memory systems. Trends Cogn Sci, 2005. 9(2): p. 83-9.

    Article  PubMed  Google Scholar 

  30. Seger, C.A., The involvement of corticostriatal loops in learning across tasks, species, and methodologies. The Basal Ganglia, 2009(IX): p. 25-39.

    Google Scholar 

  31. Graybiel, A.M., The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem, 1998. 70(1-2): p. 119-36.

    Article  PubMed  Google Scholar 

  32. Poldrack, R.A. and K. Foerde, Category learning and the memory systems debate. Neurosci Biobehav Rev, 2008. 32(2): p. 197-205.

    Article  PubMed  Google Scholar 

  33. Cockburn, J. and M.J. Frank, Reinforcement learning, conflict monitoring, and cognitive control: an integrative model of cingulate-striatal interactions and the ERN, in Neural basis of motivational and cognitive control, R.B. Mars, et al., Editors. 2011, MIT Press: Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziol, L.F. (2014). The Basal Ganglia Underpinning of Cognitive Control: The Fronto-Striatal System. In: The Myth of Executive Functioning. SpringerBriefs in Neuroscience(). Springer, Cham. https://doi.org/10.1007/978-3-319-04477-4_17

Download citation

Publish with us

Policies and ethics