Skip to main content

Body Area Networks and Healthcare

  • Chapter
  • First Online:
Book cover Advances onto the Internet of Things

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 260))

Abstract

Derived from Wireless Sensor Networks, Body Area Networks, comprise a wide range of typologies with sensor nodes placed on, close to, or implanted in the body that measure physiological signs. The availability of compact mobile computing devices makes it possible to integrate traditional healthcare with new powerful means. New paradigms in public health are arising from these developments, such as e-health and mHealth, and new converging applications can be envisioned. Physiological data acquisition provided by BANs may give care providers a unobtrusive real-time view on patient’s health. On the other hand, the patient may be informed, assisted and even given the proper treatment by care providers. In this chapter, recent work on BANs focused on healthcare and mHealth is surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)

    Article  Google Scholar 

  2. Atallah, L., Lo, B., Ali, R., King, R., Yang, G.Z.: Real-time activity classification using ambient and wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 1031–1039 (2009). doi:10.1109/TITB.2009.2028575

  3. Augello, A., Ortolani, M.: Lo Re, G., Gaglio, S.: Sensor mining for user behavior profiling in intelligent environments. Advances in Distributed Agent-Based Retrieval Tools. Studies in Computational Intelligence, vol. 361, pp. 143–158. Springer, Berlin (2011)

    Google Scholar 

  4. Balouchestani, M., Raahemifar, K., Krishnan, S.: Wireless body area networks with compressed sensing theory. In: 2012 ICME International Conference on Complex Medical Engineering (CME), pp. 364–369 (2012). doi:10.1109/ICCME.2012.6275663

  5. Coloberti, M., Lombriser, C., Roggen, D., Tröster, G., Guarneri, R., Riboni, D.: Service discovery and composition in body area networks. In: Proceedings of the ICST 3rd International Conference on Body Area Networks, BodyNets ’08, pp. 7:1–7:4. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008). http://dl.acm.org/citation.cfm?id=1460257.1460267

  6. Cornelius, C.T., Kotz, D.F.: Recognizing whether sensors are on the same body. Pervasive Mob. Comput. 8(6), 822–836 (2012). doi:10.1016/j.pmcj.2012.06.005. http://dx.doi.org/10.1016/j.pmcj.2012.06.005

  7. Coyle, S., Lau, K.T., Moyna, N., O’Gorman, D., Diamond, D., Di Francesco, F., Costanzo, D., Salvo, P., Trivella, M., De Rossi, D., Taccini, N., Paradiso, R., Porchet, J.A., Ridolfi, A., Luprano, J., Chuzel, C., Lanier, T., Revol-Cavalier, F., Schoumacker, S., Mourier, V., Chartier, I., Convert, R., De-Moncuit, H., Bini, C.: Biotex-2014; biosensing textiles for personalised healthcare management. IEEE Trans. Inf. Technol. Biomed. 14(2), 364–370 (2010). doi:10.1109/TITB.2009.2038484

    Article  Google Scholar 

  8. Davilis, Y., Kalis, A., Ifantis, A.: On the use of ultrasonic waves as a communications medium in biosensor networks. IEEE Trans. Inf. Technol. Biomed. 14(3), 650–656 (2010). doi:10.1109/TITB.2009.2039755

    Article  Google Scholar 

  9. De Paola, A., Gaglio, S.: Lo Re, G., Ortolani, M.: Multi-sensor fusion through adaptive bayesian networks. AI*IA 2011: Artificial Intelligence Around Man and Beyond. Lecture Notes in Computer Science, vol. 6934, pp. 360–371. Springer, Berlin (2011)

    Google Scholar 

  10. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). doi:10.1109/TIT.2006.871582

    Article  MathSciNet  Google Scholar 

  11. Farruggia, A.: Lo Re, G., Ortolani, M.: Probabilistic anomaly detection for wireless sensor networks. AI*IA 2011: Artificial Intelligence Around Man and Beyond. Lecture Notes in Computer Science, vol. 6934, pp. 438–444. Springer, Berlin (2011)

    Google Scholar 

  12. Forsstrom, S., Kanter, T., Johansson, O.: Real-time distributed sensor-assisted mhealth applications on the internet-of-things. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 1844–1849 (2012). doi:10.1109/TrustCom.234

  13. Galluccio, L., Melodia, T., Palazzo, S., Santagati, G.: Challenges and implications of using ultrasonic communications in intra-body area networks. In: 2012 9th Annual Conference on Wireless On-demand Network Systems and Services (WONS), pp. 182–189 (2012). doi:10.1109/WONS.2012.6152227

  14. Guraliuc, A., Barsocchi, P., Potortì, F., Nepa, P.: Limb movements classification using wearable wireless transceivers. IEEE Trans. Inf. Technol. Biomed. 15(3), 474–480 (2011). doi:10.1109/TITB.2011.2118763

    Article  Google Scholar 

  15. Halperin, D., Heydt-Benjamin, T., Ransford, B., Clark, S., Defend, B., Morgan, W., Fu, K., Kohno, T., Maisel, W.: Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In: IEEE Symposium on Security and Privacy 2008 (SP 2008). pp. 129–142 (2008). doi:10.1109/SP.2008.31

  16. Hamie, J., Denis, B., Richard, C.: Joint motion capture and navigation in heterogeneous body area networks with distance estimation over neighborhood graph. In: 2013 10th Workshop on Positioning Navigation and Communication (WPNC), pp. 1–6 (2013). doi:10.1109/WPNC.2013.6533282

  17. Istepanian, R., Laxminarayan, S., Pattichis, C.S.: M-health: emerging mobile health systems. In: Istepanian, R., Laxminarayan, S., Pattichis, C.S. (eds.) M-Health: Emerging Mobile Health Systems, XXX, 624, illus. 0–387-26558-9, p. 182. Springer, Berlin (2006)

    Google Scholar 

  18. Istepanian, R.S., Pattichis, C.S., Laxminarayan, S.: Ubiquitous m-health systems and the convergence towards 4g mobile technologies. In: M-Health, pp. 3–14. Springer, NY (2006)

    Google Scholar 

  19. Ivanov, S., Botvich, D., Balasubramaniam, S.: Cooperative wireless sensor environments supporting body area networks. IEEE Trans. Consum. Electron. 58(2), 284–292 (2012). doi:10.1109/TCE.2012.6227425

    Article  Google Scholar 

  20. Jovanov, E., Milenkovic, A.: Body area networks for ubiquitous healthcare applications: opportunities and challenges. J. Med. Syst. 35(5), 1245–1254 (2011). doi:10.1007/s10916-011-9661-x. http://dx.doi.org/10.1007/s10916-011-9661-x

  21. Kang, S., Lee, J., Jang, H., Lee, Y., Park, S., Song, J.: A scalable and energy-efficient context monitoring framework for mobile personal sensor networks. IEEE Trans. Mob. Comput. 9(5), 686–702 (2010). doi:10.1109/TMC.2009.154

    Article  Google Scholar 

  22. Khan, A., Lee, Y.K., Lee, S., Kim, T.S.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf. Technol. Biomed. 14(5), 1166–1172 (2010). doi:10.1109/TITB.2010.2051955

    Article  Google Scholar 

  23. Kifayat, K., Fergus, P., Cooper, S., Merabti, M.: Body area networks for movement analysis in physiotherapy treatments. In: 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 866–872 (2010). doi:10.1109/WAINA.2010.155

  24. Koutkias, V., Chouvarda, I., Triantafyllidis, A., Malousi, A., Giaglis, G., Maglaveras, N.: A personalized framework for medication treatment management in chronic care. IEEE Trans. Inf. Technol. Biomed. 14(2), 464–472 (2010). doi:10.1109/TITB.2009.2036367

    Article  Google Scholar 

  25. Latré, B., Braem, B., Moerman, I., Blondia, C., Demeester, P.: A survey on wireless body area networks. Wireless Netw. 17(1), 1–18 (2011). doi:10.1007/s11276-010-0252-4. http://dx.doi.org/10.1007/s11276-010-0252-4

    Google Scholar 

  26. Li, C., Raghunathan, A., Jha, N.: Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system. In: 2011 13th IEEE International Conference on e-Health Networking Applications and Services (Healthcom), pp. 150–156 (2011). doi:10.1109/HEALTH.2011.6026732

  27. Li, H., Tan, J.: Heartbeat-driven medium-access control for body sensor networks. IEEE Trans. Inf. Technol. Biomed. 14(1), 44–51 (2010). doi:10.1109/TITB.2009.2028136

    Article  Google Scholar 

  28. Lombriser, C., Marin-Perianu, R., Roggen, D., Havinga, P., Troster, G.: Modeling service-oriented context processing in dynamic body area networks. IEEE J. Sel. Areas Commun. 27(1), 49–57 (2009). doi:10.1109/JSAC.2009.090106

    Article  Google Scholar 

  29. Ma, T., Shrestha, P., Hempel, M., Peng, D., Sharif, H., Chen, H.H.: Assurance of energy efficiency and data security for ecg transmission in basns. IEEE Trans. Biomed. Eng. 59(4), 1041–1048 (2012). doi:10.1109/TBME.2011.2182196

    Article  Google Scholar 

  30. Nuxoll, E., Siegel, R.: Biomems devices for drug delivery. IEEE Eng. Med. Biol. Mag. 28(1), 31–39 (2009)

    Article  Google Scholar 

  31. Patel, M., Wang, J.: Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wirel. Commun. 17(1), 80–88 (2010). doi:10.1109/MWC.2010.5416354

    Article  Google Scholar 

  32. Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P.: Monitoring motor fluctuations in patients with parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009). doi:10.1109/TITB.2009.2033471

    Article  Google Scholar 

  33. Poon, C.C.Y., Zhang, Y.T., Bao, S.D.: A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Commun. Mag. 44(4), 73–81 (2006). doi:10.1109/MCOM.2006.1632652

    Article  Google Scholar 

  34. Pun, S.H., Gao, Y.M., Mak, P., Vai, M.I., Du, M.: Quasi-static modeling of human limb for intra-body communications with experiments. IEEE Trans. Inf. Technol. Biomed. 15(6), 870–876 (2011). doi:10.1109/TITB.2011.2161093

    Article  Google Scholar 

  35. Rego, P., Moreira, P., Reis, L.: Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: 2010 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2010)

    Google Scholar 

  36. Seyedi, M., Kibret, B., Lai, D., Faulkner, M.: A survey on intrabody communications for body area network applications. IEEE Trans. Biomed. Eng. 60(8), 2067–2079 (2013). doi:10.1109/TBME.2013.2254714

    Article  Google Scholar 

  37. Sorber, J., Shin, M., Peterson, R., Cornelius, C., Mare, S., Prasad, A., Marois, Z., Smithayer, E., Kotz, D.: An amulet for trustworthy wearable mhealth. In: Proceedings of the Twelfth Workshop on Mobile Computing Systems and Applications, HotMobile ’12, pp. 7:1–7:6. ACM, New York, NY, USA (2012). doi:10.1145/2162081.2162092. http://doi.acm.org/10.1145/2162081.2162092

  38. Su, H., Zhang, X.: Battery-dynamics driven tdma mac protocols for wireless body-area monitoring networks in healthcare applications. IEEE J. Sel. Areas Commun. 27(4), 424–434 (2009). doi:10.1109/JSAC.2009.090507

    Article  Google Scholar 

  39. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., Kwak, K.: A comprehensive survey of wireless body area networks. J. Med. Syst. 36(3), 1065–1094 (2012). doi:10.1007/s10916-010-9571-3. http://dx.doi.org/10.1007/s10916-010-9571-3

    Google Scholar 

  40. Ullah, S., Khan, P., Ullah, N., Saleem, S., Higgins, H., Kwak, K.S.: A review of wireless body area networks for medical applications. IJCNS 2(8), 797–803 (2009)

    Article  Google Scholar 

  41. Venkatasubramanian, K., Banerjee, A., Gupta, S.K.S.: Pska: usable and secure key agreement scheme for body area networks. IEEE Trans. Inf. Technol. Biomed. 14(1), 60–68 (2010). doi:10.1109/TITB.2009.2037617

    Article  Google Scholar 

  42. Villalba, E., Salvi, D., Ottaviano, M., Peinado, I., Arredondo, M.T., Akay, A.: Wearable and mobile system to manage remotely heart failure. IEEE Trans. Inf. Technol. Biomed. 13(6), 990–996 (2009). doi:10.1109/TITB.2009.2026572

    Article  Google Scholar 

  43. Wang, Z., Jiang, M., Hu, Y., Li, H.: An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 16(4), 691–699 (2012). doi:10.1109/TITB.2012.2196440

    Article  Google Scholar 

  44. Winkley, J., Jiang, P., Jiang, W.: Verity: an ambient assisted living platform. IEEE Trans. Consum. Electron. 58(2), 364–373 (2012). doi:10.1109/TCE.2012.6227435

    Article  Google Scholar 

  45. Wu, C.H., Tseng, Y.C.: Data compression by temporal and spatial correlations in a body-area sensor network: a case study in pilates motion recognition. IEEE Trans. Mob. Comput. 10(10), 1459–1472 (2011). doi:10.1109/TMC.2010.264

    Article  Google Scholar 

  46. Yang, G.Z. (ed.): Body Sensor Networks. Springer, London (2006). doi:10.1007/1-84628-484-8. http://dx.doi.org/10.1007/1-84628-484-8

  47. Zhang, M., Raghunathan, A., Jha, N.: Towards trustworthy medical devices and body area networks. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2013)

    Google Scholar 

  48. Zhang, Z., Jung, T.P., Makeig, S., Rao, B.: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ecg via block sparse bayesian learning. IEEE Trans. Biomed. Eng. 60(2), 300–309 (2013). doi:10.1109/TBME.2012.2226175

    Article  Google Scholar 

  49. Zhang, Z., Jung, T.P., Makeig, S., Rao, B.: Compressed sensing of eeg for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng. 60(1), 221–224 (2013). doi:10.1109/TBME.2012.2217959

    Article  Google Scholar 

  50. Zhang, Z., Wang, H., Vasilakos, A., Fang, H.: Ecg-cryptography and authentication in body area networks. IEEE Trans. Inf. Technol. Biomed. 16(6), 1070–1078 (2012). doi:10.1109/TITB.2012.2206115

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the PON R&C grant MI01_00091 funding the SeNSori project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Peri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peri, D. (2014). Body Area Networks and Healthcare. In: Gaglio, S., Lo Re, G. (eds) Advances onto the Internet of Things. Advances in Intelligent Systems and Computing, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-319-03992-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03992-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03991-6

  • Online ISBN: 978-3-319-03992-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics