Skip to main content

Generating Music from Flocking Dynamics

  • Chapter
  • First Online:
Controls and Art

Abstract

We explore the connection between complex systems and music by studying different approaches for generating music based on a flocking system. By developing software that links the dynamics of a standard flocking algorithm to a set of sound wave generators and to a musical score, we study how each approach reflects sonically the transition to collective order and which produces musically interesting results. First, we consider three qualitatively different ways to translate the flocking dynamics into music: (1) A direct approach that maps agent positions to sounds, (2) a synchronization approach where each agent has an oscillator that couples to neighboring agents, and (3) a physics-inspired approach that mimics the sound that would result from an effective friction between neighboring agents. We then discuss Ritmos Circadianos, a musical composition for a robot orchestra that is generated entirely from flocking dynamics in real-time, as an actual application of the proposed mapping algorithms. We find that all approaches allow the listener to discriminate between the ordered and disordered states of the flocking system and that the second and third approaches are particularly well suited for generating musically interesting and appealing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazzola G, Park J, Thalmann F (2011) Musical Creativity: strategies and tools in composition and improvisation. Springer, Heidelberg

    Google Scholar 

  2. Panish J (1997) The color of jazz: race and representation in postwar American culture. University Press of Mississippi, Jackson

    Google Scholar 

  3. Barskii V (1996) Chromaticism. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  4. Olfati-Saber R, Murray R (2004) Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 49(9):1520–1533

    Article  MathSciNet  Google Scholar 

  5. Blondel VD, Hendricks JM, Olshevsky A, Tsitsiklis JN (2005) Convergence in multiagent coordination, consensus, and flocking. In: Proceedings of joint 44th IEEE conference on decision control Eurupean Control Conference, Seville, Spain, pp 2996–3000

    Google Scholar 

  6. Scardovi L, Leonard N, Sepulchre R (2007) Stabilization of collective motion in three dimensions: a consensus approach. In: Proceedings of the 46th IEEE conference on decision and control, New Orleans, LA, pp 2931–2936

    Google Scholar 

  7. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

    Article  MathSciNet  Google Scholar 

  8. Freeman RA, Yang P, Lynch KM (2006) Distributed estimation and control of swarm formation statistics. In: Proceedings of the American control Conference, Minneapolis, MN, pp 749–755

    Google Scholar 

  9. Sepulchre R, Paley D, Leonard N (2008) Stabilization of planar collective motion with limited communication. IEEE Trans Autom Control 53(3):706–719

    Article  MathSciNet  Google Scholar 

  10. Gueron S, Levin SA, Rubenstein DI (1996) The dynamics of herds: From individuals to aggregations. J Theoret Biol 182:85–98

    Article  Google Scholar 

  11. Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theoret Biol 218(1):1–11

    Article  MathSciNet  Google Scholar 

  12. Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433(7025):513–516

    Article  Google Scholar 

  13. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, Simpson SJ (2006) From disorder to order in marching locusts. Science 312(5778):1402–1406

    Article  Google Scholar 

  14. Codognet P, Pasquet O (2009) Swarm intelligence for generative music. In: 11th IEEE international symposium on multimedia, IEEE Computer Society Washington, DC, pp 1–8

    Google Scholar 

  15. Brady R, Bargar R, Choi I, Reitzer J (1996) Auditory bread crumbs for navigating volumetric data. In: Proceedings of the late breaking hot topics of IEEE visualization ’96, San Francisco, CA, pp 25–27

    Google Scholar 

  16. Kaper HG, Tipei S, Wiebel E (1999) Data sonification and sound visualization. Comput Sci Eng 1(4):48–58

    Article  Google Scholar 

  17. Cullen C, Coyle E (2005) TrioSon: a graphical user interface for pattern sonification. 11th meeting of the international conference on auditory display., ICAD 05Limerick, Ireland, pp 6–9

    Google Scholar 

  18. Yeo WS, Berger J, Lee Z (2005) SonART: a framework for data sonification, visualization and networked multimedia applications. In: Proceedings of the 2004 international computer music conference, ICMC 2004, Miami, FL

    Google Scholar 

  19. Davis T, Rebelo P (2005) Hearing emergence: towards sound-based self-organisation. In: Proceedings of international computer music conference, Barcelona, Spain

    Google Scholar 

  20. Reynolds C (1987) Flocks, herds, and schools: a distributed behavioural model. SIGGRAPH’ 87 21(4):25–34

    Google Scholar 

  21. Spector L, Klein J (2002) Complex adaptive music systems in the Breve simulation environment. In: Proceedings of the 8th international conference on the simulation and synthesis of living systems, Artificial Life VIII

    Google Scholar 

  22. Tang E, Shiffman D (2003) Musical flocking box, http://www.antiexperience.com/edtang/works/flockingbox.html

  23. Blackwell T (2007) Swarming and music. In: Reck Miranda E, Biles JA (eds) Evolutionary computer music. Springer, Berlin, pp 194–217

    Google Scholar 

  24. Davis T (2011) Complexity as practice: a reflection on the creative outcomes of a sustained engagement with complexity. Leonardo 45(2):106–112

    Article  Google Scholar 

  25. Unemi T, Bisig D (2005) Music by interaction among two flocking species and human. In: Proceedings of the third international conference on generative systems in electronic arts, Melbourne, Australia, pp 171–79

    Google Scholar 

  26. Davis T (2010) Complexity as process: complexity inspired approaches to composition. Organised Sound 15(2):137–146

    Article  Google Scholar 

  27. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226–1229

    Article  Google Scholar 

  28. Huepe C, Aldana M (2004) Intermittency and clustering in a system of self-driven particles. Phys Rev Lett 92(16):168701

    Article  Google Scholar 

  29. Puckette M (1988) The patcher. In: Proceedings of the 14th international computer music conference, Koln, Germany, pp 420–429

    Google Scholar 

  30. Zicarelli D (1998) An extensible real-time signal processing environment for max. In: Proceedings of the international computer music conference, Ann Arbor, Michigan, pp 463–466

    Google Scholar 

  31. Davis T, Karamanlis O (2007) Gestural control of sonic swarms: composing with grouped sound objects. In: Proceedings of the SMC’07., 4th sound and music computing conference Lefkada, Greece, pp 192–195

    Google Scholar 

  32. Blackwell T, Young M (2004) Swarm granulator. In: EvoWorkshops 2004, Coimbra, Portugal, pp 399–408

    Google Scholar 

  33. Blackwell TM, Bentley P (2002) Improvised music with swarms. In: Proceedings of congress on evolutionary computation, Piscataway, NJ, pp 1462–1468

    Google Scholar 

  34. Kim-Boyle D (2005) Sound spatialization with particle systems. In: Proceedings of the 8th international conference on digital audio effects (DAFX-05), Madrid, Spain, pp 65–68

    Google Scholar 

  35. Bisig D, Neukom M, Flury J (2007) Interactive swarm orchestra. In: Proceedings of the generative art conference, Milano, Italy

    Google Scholar 

  36. Wilson S (2008) Spatial swarm granulation. In: Proceedings of the international computer music conference, Belfast, Northern Ireland

    Google Scholar 

  37. Schacher JC, Bisig D, Neukom M (2011) Composing with swarm algorithms—creating interactive audio—visual pieces using flocking behaviour. In: Proceedings of the international computer music conference, University of Huddersfield, UK

    Google Scholar 

  38. Laura M, Godfried-Willem R, Troy R (2011) The man and machine robot orchestra at logos. Comput Music J 35(4):28–48

    Google Scholar 

  39. Strogatz SH (1987) Human sleep and circadian rhythms: a simple model based on two coupled oscillators. J Math Biol 25:327–347

    Article  MATH  MathSciNet  Google Scholar 

  40. Ramírez JCF (2013) Chileno lanza sorprendente concierto para orquesta de robots, La Segunda, Santiago, Chile. 15 Jan 2013 http://www.lasegunda.com/Noticias/Impreso/2013/01/814245/chileno-lanza-sorprendente-concierto-para-orquesta-de-robots Accessed 25 Sep 2013

  41. Kauffman S (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  42. Bak P (1999) How nature works: the science of self-organized criticality. Copernicus, New York

    Google Scholar 

  43. Balleza E, Alvarez-Buylla ER, Chaos A, Kauffman S, Shmulevich I, Aldana M (2008) Critical dynamics in genetic regulatory networks: examples from four kingdoms. PLoS ONE 3(6):e2456

    Article  Google Scholar 

  44. Mora T, Bialek W (2011) Are biological systems poised at criticality? J Stat Phys 144(2):268–302

    Article  MATH  MathSciNet  Google Scholar 

  45. Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo DR, Nicolelis MAL, Ribeiro S (2010) Spike avalanches exhibit universal dynamics across the sleep–wake cycle. PLoS ONE 5(11):e14129

    Article  Google Scholar 

  46. Plenz D (2013) The critical brain. Physics 6:47

    Article  Google Scholar 

  47. Lewin R (2000) Complexity: life at the edge of chaos. The University of Chicago Press, Chicago

    Google Scholar 

  48. Strogatz S (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1–4):1–20

    Article  MATH  MathSciNet  Google Scholar 

  49. Peltola L (2004) Analysis, parametric synthesis, and control of hand clapping sounds. Master of Science Thesis, Helsinki University of Technology

    Google Scholar 

  50. Mizumoto T, Otsuka T, Nakadai K, Takahashi T, Komatani K, Ogata T, Okuno HG (2010) Human-robot ensemble between robot thereminist and human percussionist using coupled oscillator model. In: Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems, Taipei, Taiwan, pp 1957–1963

    Google Scholar 

Download references

Acknowledgments

The work of C. H. was supported by the U.S. National Science Foundation under Grant No. PHY-0848755. The work of R. F. C. and M. C. was supported by Fondecyt under Grant No. 11090193 and by the Fondo de Fomento de la Música, Consejo Nacional de la Cultura y las Artes, under grant No. 15872-0, Government of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristián Huepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huepe, C., Colasso, M., Cádiz, R.F. (2014). Generating Music from Flocking Dynamics. In: LaViers, A., Egerstedt, M. (eds) Controls and Art. Springer, Cham. https://doi.org/10.1007/978-3-319-03904-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03904-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03903-9

  • Online ISBN: 978-3-319-03904-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics