Skip to main content

A Completeness Theory for Polynomial (Turing) Kernelization

  • Conference paper
Book cover Parameterized and Exact Computation (IPEC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Included in the following conference series:

Abstract

The framework of Bodlaender et al. (ICALP 2008, JCSS 2009) and Fortnow and Santhanam (STOC 2008, JCSS 2011) allows us to exclude the existence of polynomial kernels for a range of problems under reasonable complexity-theoretical assumptions. However, some issues are not addressed by this framework, including the existence of Turing kernels such as the “kernelization” of Leaf Out Branching(k) into a disjunction over n instances each of size poly(k). Observing that Turing kernels are preserved by polynomial parametric transformations (PPTs), we define two kernelization hardness hierarchies by the PPT-closure of problems that seem fundamentally unlikely to admit efficient Turing kernelizations. This gives rise to the MK- and WK-hierarchies which are akin to the M- and W-hierarchies of ordinary parameterized complexity. We find that several previously considered problems are complete for the fundamental hardness class WK[1], including Min Ones  d -SAT(k), Binary NDTM Halting(k), Connected Vertex Cover(k), and Clique parameterized by k logn. We conjecture that no WK[1]-hard problem admits a polynomial Turing kernel. Our hierarchy subsumes an earlier hierarchy of Harnik and Naor (FOCS 2006, SICOMP 2010) that, from a parameterized perspective, is restricted to classical problems parameterized by witness size. Our results provide the first natural complete problems for, e.g., their class VC 1; this had been left open.

Due to space restrictions many proofs are deferred to the full version [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving max-r-sat above a tight lower bound. Algorithmica 61(3), 638–655 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: On out-trees with many leaves. ACM Transactions on Algorithms 8(4), 38 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Demaine, E.D., Fellows, M.R., Guo, J., Hermelin, D., Lokshtanov, D., Müller, M., Raman, V., van Rooij, J., Rosamond, F.A.: Open problems in parameterized and exact computation – IWPEC 2008. Technical Report UU-CS-2008-017, Dept. of Informatics and Computing Sciences, Utrecht University (2008)

    Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique for kernelization lower bounds. In: Proc. of the 28th international Symposium on Theoretical Aspects of Computer Science (STACS), pp. 165–176 (2011)

    Google Scholar 

  6. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel bounds for path and cycle problems. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 145–158. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MATH  Google Scholar 

  8. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cesati, M.: The Turing way to parameterized complexity. J. Comput. Syst. Sci. 67(4), 654–685 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. In: IEEE Conference on Computational Complexity, pp. 74–84 (2012)

    Google Scholar 

  11. Dell, H., Marx, D.: Kernelization of packing problems. In: Rabani [29], pp. 68–81

    Google Scholar 

  12. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: Proc. of the 42th Annual ACM Symposium on Theory of Computing (STOC), pp. 251–260 (2010)

    Google Scholar 

  13. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Drucker, A.: New limits to classical and quantum instance compression. In: FOCS, pp. 609–618. IEEE Computer Society (2012)

    Google Scholar 

  15. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer-Verlag New York, Inc. (2006)

    Google Scholar 

  17. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing 39(5), 1667–1713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 240–251. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Wu, X.: Hierarchies of inefficient kernelizability. CoRR, abs/1110.0976 (2011)

    Google Scholar 

  21. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Rabani [29], pp. 104–113

    Google Scholar 

  22. Kratsch, S.: Co-nondeterminism in compositions: A kernelization lower bound for a Ramsey-type problem. In: Rabani [29], pp. 114–122

    Google Scholar 

  23. Kratsch, S., Marx, D., Wahlström, M.: Parameterized complexity and kernelizability of max ones and exact ones problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–275. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Kratsch, S., Wahlström, M.: Preprocessing of min ones problems: A dichotomy. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 653–665. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. In: Rabani [29], pp. 94–103

    Google Scholar 

  27. Lokshtanov, D.: Wheel-free deletion is W[2]-hard. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 141–147. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8(2), 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabani, Y. (ed.): Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012. SIAM, Kyoto (2012)

    Google Scholar 

  30. Thomassé, S.: A 4k 2 kernel for feedback vertex set. ACM Transactions on Algorithms 6(2) (2010)

    Google Scholar 

  31. Yap, C.-K.: Some consequences of non-uniform conditions on uniform classes. Theor. Comput. Sci. 26, 287–300 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hermelin, D., Kratsch, S., Sołtys, K., Wahlström, M., Wu, X. (2013). A Completeness Theory for Polynomial (Turing) Kernelization. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics