Skip to main content

Lectures on Computing Cohomology of Arithmetic Groups

  • Conference paper
Computations with Modular Forms

Part of the book series: Contributions in Mathematical and Computational Sciences ((CMCS,volume 6))

Abstract

Let G be the reductive \(\mathbb {Q}\)-group \(R_{F/\mathbb {Q}} \mathrm {GL}_{n}\), where \(F/\mathbb {Q}\) is a number field. Let ΓG be an arithmetic group. We discuss some techniques to compute explicitly the cohomology of Γ and the action of the Hecke operators on the cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout these lectures we only work with congruence subgroups. For \(\mathrm{SL}_{2} (\mathbb {Z})\) this means any group containing Γ(N) for some N.

  2. 2.

    This is Harish-Chandra’s “Philosophy of cusp forms” [Har70]; see also [Bum04, Chap. 49].

  3. 3.

    Like Molière’s Monsieur Jourdain: “Par ma foi! Il y a plus de quarante ans que je dis de la prose sans que j’en susse rien, et je vous suis le plus obligé du monde de m’avoir appris cela.”

  4. 4.

    This definition of arithmetic group suffices for our purposes because we have defined our algebraic groups as subgroups of GL n . If one works more abstractly, then the correct condition is that \(\varGamma \subset \mathbf {G} (\mathbb {Q})\) is arithmetic if for any \(\mathbb {Q}\)-embedding ι:G→GL n , the group ι(Γ) is commensurable with \(\iota(\mathbf {G})\cap\mathrm{GL}_{n} (\mathbb {Z})\).

  5. 5.

    In fact the cuspidal cohomology can itself come from groups of lower rank, through functorial liftings. The paper [AGMcC08] contains evidence of cohomological lifts of paramodular forms on \(\mathrm{Sp}_{4}/\mathbb {Q}\) to \(\mathrm{SL}_{4}/\mathbb {Q}\).

  6. 6.

    Note added in proof: After this paper was prepared, dramatic progress connecting cohomology of arithmetic groups with Galois representations was announced by Harris-Lan-Taylor-Thorne and Scholze (see [HLTT13, Scho13]).

  7. 7.

    Although this construction sounds strange, we shall see that it is a reasonable notion of forms over F. Not every quadratic form of interest comes from a matrix A that is the image of a matrix from F under the embeddings; in particular the perfect forms defined in this section usually do not come from a matrix over F.

  8. 8.

    According to R. MacPherson, the great geometers of old were perfectly comfortable with multi-valued functions and would have embraced such a perspective. It is only modern mathematicians who have the paucity of imagination to insist that functions be single-valued.

  9. 9.

    A bouquet of spheres is wedge sum of a set of spheres.

  10. 10.

    For general number fields, it is not expected that every elliptic curve should correspond to a cusp form in this way. For instance, suppose F is complex quadratic. Then if E is defined over F and has complex multiplication by an order in 𝒪 F , then E should correspond to an Eisenstein series, cf. [EGM82].

  11. 11.

    Similar phenomena happen over complex quadratic fields [Cre92], and can be expected to happen over any CM field.

  12. 12.

    The cohomology computations in the following are simplified by the fact that F 1 and F 2 each have class number 1. One can still perform these computations for fields with higher class numbers, although it is best to work adelically. In practice this means that one has to work with several copies of the locally symmetric spaces instead of one, each equipped with its own Koecher decomposition. However, such complications are not always necessary. For F imaginary quadratic with odd class number, for instance, Lingham [Lin05] developed a technique to work with a single connected component.

  13. 13.

    Actually, to avoid precision problems we work with the large finite field \(\mathbb {F}_{12379}\) instead of \(\mathbb {C}\).

  14. 14.

    One curve was found by Mark Watkins using the method of Cremona-Lingham [CL07]; see the appendix to [GHY13].

  15. 15.

    One cannot help but notice the contrast between the highly symmetric perfect cone for F 1 and the minimally symmetric perfect cones for F 2.

  16. 16.

    See footnote 13.

References

  1. A. Ash, Deformation retracts with lowest possible dimension of arithmetic quotients of self-adjoint homogeneous cones. Math. Ann. 225(1), 69–76 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups. Duke Math. J. 51(2), 459–468 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Ash, L. Rudolph, The modular symbol and continued fractions in higher dimensions. Invent. Math. 55(3), 241–250 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Ash, D. Mumford, M. Rapaport, Y. Tai, Smooth Compactifications of Locally Symmetric Varieties (Math. Sci. Press, Brookline, 1975)

    Google Scholar 

  5. A. Ash, D. Grayson, P. Green, Computations of cuspidal cohomology of congruence subgroups of SL(3,Z). J. Number Theory 19(3), 412–436 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \(\mathrm{SL}_{4}(\mathbb {Z})\). J. Number Theory 94(1), 181–212 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \(\mathrm{SL}_{4}(\mathbb {Z})\). II. J. Number Theory 128(8), 2263–2274 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Ash, P.E. Gunnells, M. McConnell, Cohomology of congruence subgroups of \(\mathrm{SL}_{4}(\mathbb {Z})\). III. Math. Comput. 79(271), 1811–1831 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Ash, P.E. Gunnells, M. McConnell, Torsion in the cohomology of congruence subgroups of \(\mathrm{SL}(4,\mathbb {Z})\) and Galois representations. J. Algebra 325, 404–415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Borel, J.-P. Serre, Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973). Avec un appendice: Arrondissement des variétés à coins, par A. Douady et L. Hérault

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Bott, L.W. Tu, Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82 (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  12. R. Brooks, Platonic surfaces. Comment. Math. Helv. 74(1), 156–170 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. K.S. Brown, Cohomology of Groups. Graduate Texts in Mathematics, vol. 87 (Springer, New York, 1994). Corrected reprint of the 1982 original

    Google Scholar 

  14. D. Bump, Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55 (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  15. D. Bump, Lie Groups. Graduate Texts in Mathematics, vol. 225 (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  16. J. Bygott, Modular forms and modular symbols over imaginary quadratic fields. Ph.D. thesis, Exeter University, 1999

    Google Scholar 

  17. J.E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compos. Math. 51(3), 275–324 (1984)

    MATH  MathSciNet  Google Scholar 

  18. J.E. Cremona, Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. Lond. Math. Soc. 45(3), 404–416 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. J.E. Cremona, Algorithms for Modular Elliptic Curves, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  20. J.E. Cremona, M.P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes. Exp. Math. 16(3), 303–312 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.E. Cremona, E. Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields. Math. Comput. 62(205), 407–429 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Dutour Sikirić, A. Schürmann, F. Vallentin, A generalization of Voronoi’s reduction theory and its application. Duke Math. J. 142(1), 127–164 (2008)

    MATH  MathSciNet  Google Scholar 

  23. M. Dutour, F. Vallentin, A. Schürmann, Classification of perfect forms in dimension 8. Talk at Oberwolfach meeting Sphere packings: Exceptional structures and relations to other fields, November 2005

    Google Scholar 

  24. P. Elbaz-Vincent, H. Gangl, C. Soulé, Perfect forms and the cohomology of modular groups. (2010). arXiv:1001.0789

  25. J. Elstrodt, F. Grunewald, J. Mennicke, On the group \(\mathrm{PSL}_{2}(\mathbb {Z}[\mathrm {i}])\), in Number Theory Days, 1980. London Math. Soc. Lecture Note Ser., vol. 56, Exeter, 1980 (Cambridge Univ. Press, Cambridge, 1982), pp. 255–283

    Google Scholar 

  26. J. Faraut, A. Korányi, Analysis on Symmetric Cones. Oxford Mathematical Monographs (The Clarendon Press Oxford University Press, New York, 1994). Oxford Science Publications

    MATH  Google Scholar 

  27. D. Flöge, Zur Struktur der PSL2 über einigen imaginär-quadratischen Zahlringen. Math. Z. 183(2), 255–279 (1983). doi:10.1007/BF01214824

    Article  MATH  MathSciNet  Google Scholar 

  28. J. Franke, Harmonic analysis in weighted L 2-spaces. Ann. Sci. Éc. Norm. Super. 31(2), 181–279 (1998)

    MATH  MathSciNet  Google Scholar 

  29. E. Freitag, Hilbert Modular Forms (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  30. S.S. Gelbart, Automorphic Forms on Adèle Groups. Annals of Mathematics Studies, vol. 83 (Princeton University Press, Princeton, 1975)

    MATH  Google Scholar 

  31. M. Greenberg, J. Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms. Math. Comput. 80(274), 1071–1092 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. F. Grunewald, H. Helling, J. Mennicke, SL2 over complex quadratic number fields. I. Algebra Log. 17(5), 512–580, 622 (1978)

    Google Scholar 

  33. P.E. Gunnells, Modular symbols for \({\mathbb {Q}}\)-rank one groups and Voronoĭ reduction. J. Number Theory 75(2), 198–219 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. P.E. Gunnells, Computing Hecke eigenvalues below the cohomological dimension. Exp. Math. 9(3), 351–367 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. P.E. Gunnells, D. Yasaki, Hecke operators and Hilbert modular forms, in Algorithmic Number Theory. Lecture Notes in Comput. Sci., vol. 5011 (Springer, Berlin, 2008), pp. 387–401

    Chapter  Google Scholar 

  36. P.E. Gunnells, D. Yasaki, Modular forms and elliptic curves over the cubic field of discriminant −23. Int. J. Number Theory 9(1), 53–76 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. P.E. Gunnells, F. Hajir, D. Yasaki, Modular forms and elliptic curves over the field of fifth roots of unity. Exp. Math. 22(2), 203–216 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Harder, Eisenstein cohomology of arithmetic groups and its applications to number theory, in Proceedings of the International Congress of Mathematicians, Vol. I, II, Kyoto, 1990 (Math. Soc. Japan, Tokyo, 1991), pp. 779–790

    Google Scholar 

  39. Harish-Chandra, Eisenstein series over finite fields, in Functional Analysis and Related Fields, Proc. Conf. M. Stone, Univ. Chicago, Chicago, Ill., 1968 (Springer, New York, 1970), pp. 76–88

    Chapter  Google Scholar 

  40. M. Harris, K.-W. Lan, R. Taylor, J. Thorne, Galois representations for regular algebraic cusp forms over CM fields. Preprint

    Google Scholar 

  41. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34 (American Mathematical Society, Providence, 2001). Corrected reprint of the 1978 original

    MATH  Google Scholar 

  42. M. Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I. Math. Ann. 141, 384–432 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  43. R.P. Langlands, On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics, vol. 544 (Springer, Berlin, 1976)

    MATH  Google Scholar 

  44. J.-S. Li, J. Schwermer, Automorphic representations and cohomology of arithmetic groups, in Challenges for the 21st Century, Singapore, 2000 (World Sci. Publ., River Edge, 2001), pp. 102–137

    Google Scholar 

  45. M. Lingham, Modular forms and elliptic curves over imaginary quadratic fields. Ph.D. thesis, Nottingham, 2005

    Google Scholar 

  46. C. Maclachlan, A.W. Reid, The Arithmetic of Hyperbolic 3-Manifolds. Graduate Texts in Mathematics, vol. 219 (Springer, New York, 2003)

    Book  MATH  Google Scholar 

  47. R. MacPherson, M. McConnell, Classical projective geometry and modular varieties, in Algebraic Analysis, Geometry, and Number Theory, Baltimore, MD, 1988 (Johns Hopkins Univ. Press, Baltimore, 1989), pp. 237–290

    Google Scholar 

  48. R. MacPherson, M. McConnell, Explicit reduction theory for Siegel modular threefolds. Invent. Math. 111(3), 575–625 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  49. J.I. Manin, Parabolic points and zeta functions of modular curves. Izv. Akad. Nauk SSSR, Ser. Mat. 36, 19–66 (1972)

    MATH  MathSciNet  Google Scholar 

  50. E.R. Mendoza, Cohomology of PGL2 over imaginary quadratic integers. Bonner Mathematische Schriften [Bonn Mathematical Publications], 128, Universität Bonn Mathematisches Institut, Bonn, 1979, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979

    Google Scholar 

  51. R. Padovan, Proportion: Science, Philosophy, Architecture (Taylor & Francis, London, 1999)

    Google Scholar 

  52. A. Page, Computing arithmetic Kleinian groups (2012). arXiv:1206.0087

  53. Plato, The Collected Dialogues of Plato (Princeton University Press, Princeton, 2005)

    Google Scholar 

  54. V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory. Pure and Applied Mathematics, vol. 139 (Academic Press Inc., Boston, 1994). Translated from the 1991 Russian original by Rachel Rowen

    Book  MATH  Google Scholar 

  55. R. Pollack, Overconvergent modular symbols. This volume, doi:10.1007/978-3-319-03847-6_3

  56. P. Scholze, On torsion in the cohomology of locally symmetric varieties. Preprint (2013)

    Google Scholar 

  57. A. Schürmann, Computational Geometry of Positive Definite Quadratic Forms. University Lecture Series, vol. 48 (American Mathematical Society, Providence, 2009). Polyhedral reduction theories, algorithms, and applications

    MATH  Google Scholar 

  58. J. Schwermer, Geometric cycles, arithmetic groups and their cohomology. Bull., New Ser., Am. Math. Soc. 47(2), 187–279 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. J.-P. Serre, Cohomologie des groupes discrets, in Prospects in Mathematics, Proc. Sympos., Princeton Univ., Princeton, N.J., 1970. Ann. of Math. Studies, vol. 70 (Princeton Univ. Press, Princeton, 1971), pp. 77–169

    Google Scholar 

  60. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, vol. 11 (Iwanami Shoten, Publishers, Tokyo, 1971). Kanô Memorial Lectures, No. 1

    MATH  Google Scholar 

  61. J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd edn. Graduate Texts in Mathematics, vol. 106 (Springer, Dordrecht, 2009)

    Book  MATH  Google Scholar 

  62. C. Soulé, Cohomologie de \({\rm SL}_{3}(\mathbb {Z})\). C. R. Acad. Sci. Paris Sér. A-B 280(5), A251–A254 (1975)

    Google Scholar 

  63. N. Steenrod, Homology with local coefficients. Ann. Math. 44, 610–627 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  64. W. Stein, Modular Forms, a Computational Approach. Graduate Studies in Mathematics, vol. 79 (American Mathematical Society, Providence, 2007). With an appendix by Paul E. Gunnells

    MATH  Google Scholar 

  65. B. van Geemen, W. van der Kallen, J. Top, A. Verberkmoes, Hecke eigenforms in the cohomology of congruence subgroups of SL(3,Z). Exp. Math. 6(2), 163–174 (1997)

    Article  MATH  Google Scholar 

  66. J.W. Vick, Homology Theory, 2nd edn. Graduate Texts in Mathematics, vol. 145 (Springer, New York, 1994). An introduction to algebraic topology

    Book  MATH  Google Scholar 

  67. D.A. Vogan Jr., Cohomology and group representations, in Representation Theory and Automorphic Forms. Proc. Sympos. Pure Math., vol. 61, Edinburgh, 1996 (Amer. Math. Soc., Providence, 1997), pp. 219–243

    Chapter  Google Scholar 

  68. D.A. Vogan Jr., G.J. Zuckerman, Unitary representations with nonzero cohomology. Compos. Math. 53(1), 51–90 (1984)

    MATH  MathSciNet  Google Scholar 

  69. K. Vogtmann, Rational homology of Bianchi groups. Math. Ann. 272(3), 399–419 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  70. J. Voight, Computing automorphic forms on Shimura curves over fields with arbitrary class number, in Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 6197 (Springer, Berlin, 2010), pp. 357–371

    Chapter  Google Scholar 

  71. G. Voronoı̌, Nouvelles applications des paramétres continus à la théorie des formes quadratiques, I. Sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97–178 (1908)

    MATH  Google Scholar 

  72. D. Yasaki, On the existence of spines for \(\mathbb {Q}\)-rank 1 groups. Sel. Math. New Ser. 12(3–4), 541–564 (2006)

    MATH  MathSciNet  Google Scholar 

  73. D. Yasaki, An explicit spine for the Picard modular group over the Gaussian integers. J. Number Theory 128(1), 207–234 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  74. D. Yasaki, Bianchi modular forms. Package for the Magma Computer Algebra System (2009)

    Google Scholar 

  75. D. Yasaki, Binary Hermitian forms over a cyclotomic field. J. Algebra 322, 4132–4142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Gunnells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gunnells, P.E. (2014). Lectures on Computing Cohomology of Arithmetic Groups. In: Böckle, G., Wiese, G. (eds) Computations with Modular Forms. Contributions in Mathematical and Computational Sciences, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-03847-6_1

Download citation

Publish with us

Policies and ethics