Skip to main content

Global Climate Model Simulations of North America

  • Chapter
  • First Online:
Climate Change in North America

Part of the book series: Regional Climate Studies ((REGCLIMATE))

Abstract

Previous chapters have concentrated on what observations tell us about the climate of North America and how it has changed with time. Proxy records provide the data for geological time scales, weather station measurements cover the last 150 years or so, and satellite observations are available for the last four decades. This is the first of two chapters on the evaluation and use of computer models to simulate recent climate change in North America and to estimate future climate resulting from emissions of greenhouse gases into the atmosphere and land use change. This chapter concentrates on global models; the following chapter focuses on regional models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Shiogama H, Nozawa T, Emori S (2011) Estimation of future surface temperature changes constrained using the future-present correlated modes in inter-model variability of CMIP3 multimodel simulations. J Geophys Res-Atmospheres 116. doi: 10.1029/2010JD015111

  • AchutaRao K, Sperber KR (2002) Simulation of the El Niño southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19:191–209

    Article  Google Scholar 

  • AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15. doi:10.1007/s00382-006-0119-7

    Article  Google Scholar 

  • AchutaRao K et al (2004) An appraisal of coupled climate model simulations. UCRL-TR-202550, Lawrence Livermore National Laboratory, Livermore, CA, pp 197

    Google Scholar 

  • Adams DK, Comrie AC (1997) The North American monsoon. Bull Amer Meteor Soc 78:2197–2213. doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2

  • Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484. doi:10.1126/science.1160787

    Article  Google Scholar 

  • Anderson BT (2011) Near-term increase in frequency of seasonal temperature extremes prior to the 2 °C global warming target. Clim Change 108:581–589. doi:10.1007/s10584-011-0196-4

    Article  Google Scholar 

  • Biasutti M, Sobel AH (2009) Delayed Sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett 36. doi: 10.1029/2009GL041303

  • Boe J, Hall A, Qu X (2009) September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat Geosci. doi:10.1038/NGEO467

    Google Scholar 

  • Braganza K, Karoly DJ, Arblaster JM (2004) Diurnal temperature range as an index of global climate change during the twentieth century. Geophys Res Lett 31:L13217. doi:10.1029/2004GL019998

    Article  Google Scholar 

  • Brekke LD, Dettinger MD, Maurer EP et al (2008) Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Clim Change 89:371–394. doi:10.1007/s10584-007-9388-3

    Article  Google Scholar 

  • Brown RD, Mote PW (2009) The response of northern hemisphere snow cover to a changing climate. J. Clim 22:2124–2145. doi: http://dx.doi.org/10.1175/2008JCLI2665.1

    Google Scholar 

  • Busby SJ (2008) Simulating multiyear drought events in North America with the HadCM3 climate model. Weather 63:240–243

    Article  Google Scholar 

  • Camargo SJ (2012) Global and regional aspects of tropical cyclone activity in the CMIP5 models. J Clim submitted

    Google Scholar 

  • Christensen J, Kjellstrom E, Giorgi F et al (2010) Weight assignment in regional climate models. Clim Res 44:179–194. doi:10.3354/cr00916

    Article  Google Scholar 

  • Christensen, JH, Hewitson B, Busuioc A et al (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (AR4 Chapter 11)

    Google Scholar 

  • Cook ER, Woodhouse C, Eakin CM et al (2004) Long term aridity changes in the western United States. Science 306:1015–1018

    Article  Google Scholar 

  • Connolley W, Bracegirdle T (2007) An antarctic assessment of IPCC AR4 coupled models. Geophys Res Lett 34. doi: 10.1029/2007GL031648

  • Coquard J, Duffy PB, Taylor KE (2004) Present and future surface climate in the western US as simulated by 15 global climate models. Clim Dyn 23:455–472

    Article  Google Scholar 

  • Déry SJ, Wood EF (2006) Analysis of snow in the 20th and 21st century. Geophysical Fluid Dynamics Laboratory coupled climate model simulations. J Geophys Res 111:D19113. doi: 10.1029/2005JD006920

  • Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473. doi: 10.1175/1520-0442(1999)0122.0.CO;2

    Google Scholar 

  • Dai A et al (2001) Climates of the twentieth and twenty-first centuries simulated by the NCAR climate system model. J Clim 14:485–519

    Article  Google Scholar 

  • Derksen C, Brown R (2012) Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections. Geophys Res Lett. doi: 10.1029/2012GL053387, in press

  • Dhakhwa GB, Campbell CL (1998) Potential effects of differential day-night warming in global climate change on crop production. Clim Change 40:647–667

    Article  Google Scholar 

  • Dietmüller S, Ponater M, Sausen R et al (2008) Contrails, natural clouds, and diurnal temperature range. J Clim 21:5061–5075. doi:10.1175/2008JCLI2255

    Article  Google Scholar 

  • Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett 37:L15701. doi:10.1029/2010GL043888

    Article  Google Scholar 

  • Diffenbaugh N, Pal J, Trapp R et al (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci 102(44):15774–15778

    Article  Google Scholar 

  • Duffy PB, Tebaldi C (2012) Increasing prevalence of extreme summer temperatures in the US. Clim Change 111(2):487–495. doi:10.1007/s10584-012-0396-6

    Article  Google Scholar 

  • Douglas MW, Maddox RA, Howard k, Reyes S (1993) The Mexican monsoon. J Clim 6:1665–1677

    Google Scholar 

  • Easterling DR et al (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367

    Article  Google Scholar 

  • Feng S, Oglesby RJ (2010) Influence of Atlantic sea surface temperatures on persistent drought in North America. Clim Dyn. doi:10.1007/s00382-010-0835-x

    Google Scholar 

  • Feng S, Oglesby RJ, Rowe CM et al (2008) Atlantic and Pacific SST influences on medieval drought in North America simulated by the community atmospheric model. J Geophys Res 113:D11101. doi:10.1029/2007JD00934

    Article  Google Scholar 

  • Fyfe JC, Boer GJ, Flato GM (1999) The Arctic and Antarctic oscillations and their projected changes under global warming. Geophys Res Lett 26(11):1601–1604. doi:10.1029/1999GL900317

    Article  Google Scholar 

  • Frei A, Brown R, Miller JA, Robinson DA (2005) Snow mass over North America: observations and results from the second phase of the atmospheric model intercomparison project. J Hydrom 6:681–695. doi: http://dx.doi.org/10.1175/JHM443.1

    Google Scholar 

  • Frei A, Gong G (2005) Decadal to century scale trends in North American snow extent in coupled atmosphere-ocean general circulation models. Geophys Res Lett 32:L18502. doi:10.1029/2005GL023394

    Article  Google Scholar 

  • Furtado JC, Di Lorenzo E, Schneider N et al (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067

    Article  Google Scholar 

  • Gallo KP, Easterling DR, Peterson TC (1996) The influence of land use/land cover on climatological values of the diurnal temperature range. J Clim 9:2941–2944

    Article  Google Scholar 

  • Gates WL, Rowntree PR, Zeng Q-C (1990) Validation of climate models. In: Houghton JT, Jenkins GJ, Ephraums JJ (eds) Climate change, the IPCC scientific assessment. Cambridge University Press, Cambridge, pp 93–130

    Google Scholar 

  • Gates WL, Henderson-Sellers A, Boer GJ et al (1995) Climate models–evaluation. In: Houghton JT, Meira Filho LG, Callander BA et al (eds) Climate change 1995 the science of climate change, contribution of working group I to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Greene AM, Goddard L, Lall U (2006) Probabilistic multimodel regional temperature change projections. J Clim 19:4326–4343

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M et al (2012) A first look at ENSO in CMIP5. CLIVAR Exch 17:29–32. ISSN: 1026-0471

    Google Scholar 

  • Gutowski WJ, Hegerl GC, Holland GJ et al (2008) Causes of observed changes in extremes and projections of future changes. In: Karl, TR, Meehl GA, Christopher DM et al (eds) Weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. A report by the U.S. climate change science program and the subcommittee on global change research, Washington, DC. pp 81–116

    Google Scholar 

  • Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502. doi: 10.1029/2005GL025127

  • Hegerl GC, Zwiers FW, Braconnot P et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hezel PJ, Zhang X, Bitz CM et al (2012) Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys Res Lett 39:L17505. doi:10.1029/2012GL052794

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change 2007. In: Solomon S, Qin D, Manning M et al (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field, CB, Barros V, Stocker TF et al (eds). A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 582

    Google Scholar 

  • Jiang X-A, Maloney ED, Li J-LF, Waliser DE (2012) Simulations of the eastern North Pacific intraseasonal variability in CMIP5 GCMs. J Clim (in press)

    Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (eds) (2009) Global climate change impacts in the United States, Cambridge University Press, Cambridge

    Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Amer Meteor Soc 79:231–241. doi:10.1175/1520-0477(1998)079<0231:STOPAF>2.0.CO;2

  • Kharin VV, Zwiers FW (2000) Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM. J Clim 13:3670–3788

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419

    Google Scholar 

  • Kiehl JT, Gent PR (2004) The Community climate system model, version 2. J Clim 17:3666–3682

    Google Scholar 

  • Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. doi:10.1029/2012GL052006

    Google Scholar 

  • Kunkel K (2003) North American trends in extreme precipitation. Nat Hazards 29:291–305

    Article  Google Scholar 

  • Kunkel KE, Bromirski PD, Brooks HE et al (2008) Observed changes in weather and climate extremes. In: Karl TR, Meehl GA, Miller CD et al (eds) Weather and climate extremes in a changing climate: regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands. Synthesis and assessment product 3.3. U.S. Climate change science program, Washington, DC, pp 35–80

    Google Scholar 

  • Knutti R, Abramowitz G, Collins M et al (2010) Good Practice Guidance Paper on Assessing and Combining Multi Model Climate Projections. In: Stocker TF, Qin D, Plattner G-K et al (eds) Meeting report of the intergovernmental panel on climate change expert meeting on assessing and combining multi model climate projections. IPCC working group I technical support unit, University of Bern, Bern, Switzerland

    Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  • Lin J-L (2007) Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys Res Lett 34:L12702. doi:10.1029/2006GL028937

    Article  Google Scholar 

  • Lin J-L, Kiladis GN, Mapes BE et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Lin J-L, Mapes BE, Weickmann KM et al (2008) North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs. J Clim 21:2919–2937

    Article  Google Scholar 

  • Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Lett 34:L05715. doi:10.1029/2006GL028726

    Article  Google Scholar 

  • Long L, Mo K, Schemm J-K (2012) Drought and persistent wet events projected in the CMIP5 experiments. J Clim (in review)

    Google Scholar 

  • Karl TR, Kukla G, Razuvayev VN et al (1991) Global warming: evidence for asymmetric diurnal temperature change. Geophys Res Lett 18(12):2253–2256. doi:10.1029/91GL02900

    Article  Google Scholar 

  • Karl TR, Jones PD, Knight RW et al (1993) A new perspective on recent global warming: asymmetrical trends in daily maximum and minimum temperature. Bull AMS 74:1007–1023

    Google Scholar 

  • Karnauskas KB, Giannini A, Seager R, Busalacchi AJ (2012) A simple mechanism for the climatological midsummer drought along the Pacific coast of Central America. Atmósfera (in press)

    Google Scholar 

  • Knutson T et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:10.1038/ngeo779

    Article  Google Scholar 

  • Knutti R, Furrer R, Tebaldi C et al (2010b) Challenges in combining projections from multiple models. J Clim 23:2739–2758. doi:10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Kumar S, Kinter J, Dirmeyer PA et al (2012) Multi-decadal climate variability and the “Warming Hole” in North America-results from CMIP5 20th and 21st century climate simulations. J Clim (submitted)

    Google Scholar 

  • Magaña V, Amador JA, Medina S (1999) The midsummer drought over Mexico and Central America. J Clim 12:1577–1588

    Article  Google Scholar 

  • Maloney ED, Camargo SJ, Chang E et al (2012) North American climate in CMIP5 experiments: Part III: assessment of 21st century projections. J Clim (in revision)

    Google Scholar 

  • Maloney ED, Chelton DB, Esbensen SK (2008) Subseasonal SST variability in the Tropical Eastern North Pacific during boreal summer. J Clim 21:4149–4167

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000) Modulation of eastern north Pacific hurricanes by the Madden-Julian oscillation. J Clim 13:1451–1460. doi: 10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079. doi: http://dx.doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2

  • McAvaney B, Covey C, Joussaume S et al (2001) Model evaluation. In: Houghton JT, Ding Y, Griggs DJ et al (eds) The scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 881

    Google Scholar 

  • Meehl GA, Hu A (2006) Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multi-decadal Pacific sea surface temperature anomalies. J Clim 19:1605–1623.

    Google Scholar 

  • Meehl GA, Tebaldi C, Walton G et al (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36:L23701. doi:10.1029/2009GL040736

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T et al (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Miller RL, Schmidt GA, DT Shindell (2006) Forced variations of annular modes in the 20th century IPCC AR4 simulations. J Geophys Res 111:D18101. doi: 10.1029/2005JD006323

  • Min S-K, Hense A (2006) A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys Res Lett 33:L08708. doi:10.1029/2006GL025779

    Article  Google Scholar 

  • Murphy J, Booth B, Collins M et al (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Philos Trans R Soc A-Math Phys Eng Sci 365:1993–2028. doi:10.1098/rsta.2007.2077

    Article  Google Scholar 

  • Neelin JD, Langenbrunner B, Meyerson JE et al (2012) California winter precipitation change under global warming in the coupled model intercomparison project 5 ensemble. J Clim (submitted)

    Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-Forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857. doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2

    Google Scholar 

  • Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623

    Article  Google Scholar 

  • Oshima K, Tanimoto Y (2009) An evaluation of reproducibility of the Pacific Decadal Oscillation in the CMIP3 simulations. J Meteor Soc Jpn 87:755–770

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Santer BD, Gleckler PJ (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci 106:8441–8446

    Article  Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Article  Google Scholar 

  • Raisanen J, Ruokolainen L, Ylhaisi J (2010) Weighting of model results for improving best estimates of climate change. Clim Dyn 35:407–422

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Rauscher SA, Giorgi F, Diffenbaugh NS, Seth A (2008) Extension and intensification of the meso-American mid-summer drought in the twenty-first century. Clim Dyn 31:551–571

    Article  Google Scholar 

  • Salathe E (2006) Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys Res Lett 33:L19820. doi:10.1029/2006GL026882

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ et al (2004) On the cause of the 1930s dust bowl. Science 303:1855–1858

    Article  Google Scholar 

  • Schubert S et al (2009) A US CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim 22:5251–5272. doi: http://dx.doi.org/10.1175/2009JCLI3060.1

    Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Seager R, Kushner Y, Herweijer C et al (2005) Modeling of tropical forcing of persistent droughts and pluvials over Western North America: 1856-2000. J Clim 18:4065–4088

    Article  Google Scholar 

  • Seager R, Ting MF, Held I et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184

    Article  Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Field CB, Barros V, Stocker TF et al (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp 109–230

    Google Scholar 

  • Seth A, Rauscher SA, Rojas M et al (2011) Enhanced spring convective barrier for monsoons in a warmer world? Clim Change 104:403–414

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American monsoon. Clim Change 98:331–357. doi:10.1007/s10584-009-9736-6

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31:79–105

    Article  Google Scholar 

  • Sheffield J, Barrett A, Colle B et al (2013a) North American climate in CMIP5 experiments. Part I: evaluation of 20th century continental and regional climatology. J Clim 26:9209–9245. doi:10.1175/JCLI-D-12-00592.1

    Google Scholar 

  • Sheffield J, Camargo SJ, Colle B et al (2013b) North American climate in CMIP5 experiments: Part II: evaluation of 20th century intra-seasonal to decadal variability. J Clim 26:9247–9290. doi:10.1175/JCLI-D-12-00593.110.1175/JCLI-D-12-00593.1

  • Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Article  Google Scholar 

  • Shiogama H, Emori S, Hanasaki N et al (2011) Observational constraints indicate risk of drying in the Amazon basin. Nat Commun 2. doi: 10.1038/ncomms1252

  • Shukla J, DelSole T, Fennessy M et al (2006) Climate model fidelity and projections of climate change. Geophys Res Lett 33:L07702. doi:10.1029/2005GL025579

    Article  Google Scholar 

  • Slade SA, Maloney ED (2012) An intraseasonal prediction model of Atlantic and east Pacific tropical cyclone genesis. Mon Wea Rev (accepted pending minor revisions)

    Google Scholar 

  • Stine S (1994) Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369:546–549

    Article  Google Scholar 

  • Stone DA, Weaver AJ (2002) Daily maximum and minimum temperature trends in a climate model. Geophys Res Lett 29(9):70-1–70-4. doi: 10.1029/2001GL014556

    Google Scholar 

  • Stone D, Weaver A (2003) Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCMA coupled model. Clim Dyn 20:435–445

    Google Scholar 

  • Stroeve J, Holland MM, Meier W et al (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502. doi:10.1029/2012GL052676

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79:185–211

    Article  Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822. doi:10.1029/2005GL024379

    Article  Google Scholar 

  • Walsh JE, Chapman WL, Romanovsky V et al (2008) Global climate model performance over Alaska and Greenland. J Clim 21:6156–6174

    Article  Google Scholar 

  • Wan M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2009GL037820

    Article  Google Scholar 

  • Watterson I, Whetton P (2011) Distributions of decadal means of temperature and precipitation change under global warming. J Geophys Res-Atmospheres 116. doi: 10.1029/2010JD014502

  • Waugh D, Eyring V (2008) Quantitative performance metrics for stratospheric-resolving chemistry-climate models. Atmos Chem Phys 8:5699–5713

    Article  Google Scholar 

  • Wehner M, Easterling DR, Lawrimore JH, Heim RR, Vose RS, Santer BD (2011) Projections of future drought in the continental United States and Mexico. J Hydrometeor 12:1359-1377. doi:10.1175/2011JHM1351.1

    Google Scholar 

  • Wu Q (2010) Associations of diurnal temperature range change with the leading climate variability modes during the Northern Hemisphere wintertime and their implication on the detection of regional climate trends. J Geophys Res 115:D19101. doi:10.1029/2010JD014026

    Article  Google Scholar 

  • Yeh S, Kirtman B (2004) Decadal North Pacific sea surface temperature variability and the associated global climate anomalies in a coupled general circulation model. J Geophys Res 109:0148–0227. doi: 10.1029/2004JD004785

    Google Scholar 

  • Zhang X, Zwiers FW, Hegerl GC et al (2007) Detection of human influence on 20th century precipitation trends. Nature 448:461–465. doi:10.1038/nature06025

    Article  Google Scholar 

  • Zhao M, Held IM (2012) TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J Clim 25:2995–3009

    Article  Google Scholar 

  • Zhou L, Dickinson RE, Dai A, Dirmeyer P (2010) Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations. Clim Dyn 35:1289–1307. doi: 10.1007/s00382-009-0644-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip B. Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duffy, P.B., Maloney, E., Sheffield, J. (2014). Global Climate Model Simulations of North America. In: Ohring, G. (eds) Climate Change in North America. Regional Climate Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-03768-4_4

Download citation

Publish with us

Policies and ethics