Date: 20 Dec 2013

Poster Abstract: Link Quality Estimation—A Case Study for On-line Supervised Learning in Wireless Sensor Networks

* Final gross prices may vary according to local VAT.

Get Access


We focus on the implementation issues of on-line, batch supervised learning in computationally limited devices. As a case study, we consider the use of such techniques for link quality estimation. We compare three strategies for the on-line selection of the data samples to be kept in memory and used for learning. Results suggest that strategies that keep balanced the set of training samples in terms of ranges of target values provide better accuracy and faster convergence.