Skip to main content

3D Video

  • Chapter
  • First Online:
Quality of Experience

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

Abstract

3D video has been considered as the next step in television for some time. The transition from 2D to 3D is frequently seen as comparable to the transition from monochrome to color. The introduction of this new dimension adds new challenges regarding the question of its relates with Quality of Experience (QoE). This chapter mainly focuses on presenting the particular challenges related with stereoscopic 3D video quality. This includes the difficulty to evaluate QoE of 3D video, taking into account all relevant factors. In particular, traditional approaches fail to capture aspects such as the added value in terms of QoE due to 3D depth or quality-issues brought by 3D-specific artifacts and their effect on visual comfort, so that alternative solutions for evaluation are required. As a consequence, the aim of this chapter is to address 3D-specific aspects of visual perception. The employed technology is another aspect of high influence on 3D video QoE. The chapter addresses the different issues related with content creation, transmission and representation, to help the reader understand the differences to a 2D transmission chain, and how technology affects the perception and the construction of the general judgment of 3D video QoE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrén B, Wang K, Brunnström K (2012) Characterizations of 3D TV: active vs passive. In: SID symposium digest of technical papers

    Google Scholar 

  2. Barkowsky M, Wang K, Cousseau R, Brunnström K, Olsson R, Callet PL (2010) Subjective quality assessment of error concealment strategies for 3DTV in presence of asymmetric transmission errors. In: 18th international of Packet video workshop (PV)

    Google Scholar 

  3. Benoit A, Callet PL, Campisi P, Cousseau R (2008) Quality assessment of stereoscopic images. In: IEEE international conference on image processing. ICIPSan Diego, California, pp 1231–1234

    Google Scholar 

  4. Boev A, Hollosi D, Gotchev A, Egiazarian K (2009) Classification and simulation of stereoscopic artifacts in mobile 3DTV content. In: Proceedings of the SPIE 7237, stereoscopic displays and applications XX, vol 7237

    Google Scholar 

  5. Bosc E, Pepion R, Callet PL, Köppel M, Ndjiki-Nya P, Pressigout M, Morin L (2011) Towards a new quality metric for 3-D synthesized view assessment. IEEE J Sel Top Sign Process 5(7):1332–1343

    Article  Google Scholar 

  6. Bosc E, Pepion R, Callet PL, Pressigout M, Morin L (2012) Reliability of 2D quality assessment methods for synthesized views evaluation in stereoscopic viewing conditions. In: 3DTV-conference: the true vision capture, transmission and display of 3D video (3DTV-CON)

    Google Scholar 

  7. Bosc E, Riou P, Pressigout M, Morin L, (2012) Bit-rate allocation between texture and depth: influence of data sequence characteristics. In: 3DTV-conference, (2012) the true vision capture, transmission and display of 3D video. Zurich, Switzerland

    Google Scholar 

  8. Brunnström K, Wang K, Andrén B (2013) Simulator sickness analysis of 3D video viewing on passive 3DTV. In: Stereoscopic displays and applications XXIV

    Google Scholar 

  9. Campisi P, Callet PL, Marini E (2007) Stereoscopic image quality assessment. In: European signal processing conference

    Google Scholar 

  10. Carnec M, Callet PL, Barba D (2003) An image quality assessment method based on perception of structural information. In: Proceedings of the IEEE international conference on image processing (ICIP 03), vol 2. Barcelona, Spain, pp 185–188

    Google Scholar 

  11. Chen W, Fournier J, Barkowsky M, Callet PL (2011) New stereoscopic video shooting rule based on stereoscopic distortion parameters and comfortable viewing zone. Stereoscopic displays and applications XXII. Proceedings of the SPIE, vol. 7863, pp 786310–786313

    Google Scholar 

  12. Chen W, Jérôme F, Marcus B, Patrick LC (2010) New requirements of subjective video quality assessment methodologies for 3DTV. In: Video processing and quality metrics 2010 (VPQM). Scottsdale

    Google Scholar 

  13. Consortium, 3D@home. & the MPEG Industry Forum 3DTV Working Group: Glossary for video & perceptual quality of stereoscopic video. Available online at: http://www.3dathome.org (2010)

  14. Cutting JE, Vishton PM (1995) Perceiving layout and knowing distance: the integration, relative potency and contextual use of different information about depth. In: Epstein W, Rogers S (Eds) Perception of space and motion. Handbook of perception and cognition (2nd ed.), pp. 69–117. San Diego, CA, US: Academic Press

    Google Scholar 

  15. Dykstra O (1960) Rank analysis of incomplete block designs: a method of paired comparisons employing unequal repetitions on Pairs. Biometrics 16(2):176–188

    Article  MATH  Google Scholar 

  16. Grau O, Müller M, Kluger J (2011) Tools for 3D-TV programme production. British Broadcasting Corporation, technical report

    Google Scholar 

  17. Handley JC (2001) Comparative analysis of Bradley-Terry and Thurstone-Mosteller model of paired comparisons for image quality assessment. In: Proceedings of the IS&T’s image processing, image quality, image capture, systems conference

    Google Scholar 

  18. Hanhart P, Simone FD, Ebrahimi T (2012) Quality assessment of asymmetric stereo pair formed from decoded and synthesized views. In: Fourth international workshop on Quality of Multimedia Experience (QoMEX), pp 236–241

    Google Scholar 

  19. He S, Zhang T, Doyen D (2011) Visual discomfort prediction for stereo contents. In: Proceedings of the SPIE 7863, stereoscopic displays and applications XXII

    Google Scholar 

  20. Hillis JM, Watt SJ, Landy MS, Banks MS (2004) Slant from texture and disparity cues: optimal cue combination. J Vision 4:967–992

    Google Scholar 

  21. Huynh-Thu Q, Callet PL, Barkowsky M (2010) Video quality assessment: from 2D to 3D–challenges and future trends. In: 17th IEEE Quality of Multimedia Experience (QoMEX), Hong Kong, pp 4025–4028

    Google Scholar 

  22. Ijsselsteijn W, Ridder HD, Freeman J, Avons SE, Bouwhuis D (2001) Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence Teleoperators Virtual Environ 10:298–311

    Google Scholar 

  23. Information Display Society: Display measurements standard. In:http://icdm-sid.org/Public/DMS/ICDM-DMS.html

  24. ITU-T Contribution COM 12–C192-E (2011) Comparison of the ACR and PC evaluation methods concerning the effects of video resolution and size on visual subjective ratings. In: ITU. SG12 Meeting, Geneva

    Google Scholar 

  25. Jin L, Boev A, Gotchev A, Egiazarian K (2011) 3D-DCT based perceptual quality assessment of stereo video image. In: 18th IEEE International Conference on Image Processing (ICIP), pp 2521–2524

    Google Scholar 

  26. Kaptein RG, Kuijsters A, Lambooij MTM, IJsselsteijn WA, Heynderickx I (2008) Performance evaluation of 3D-TV systems. Image quality and system performance V. Proceedings of SPIE, vol 6808. pp 1–11

    Google Scholar 

  27. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method of quantifying simulator sickness. Int J Aviat Psychol 3:203–220

    Article  Google Scholar 

  28. Kim JS, Banks S (2012) Effective spatial resolution of temporally and spatially interlaced stereo 3D televisions. In: SID symposium digest of technical, pp 879–882

    Google Scholar 

  29. Kozamernik F, Steinmann V, Sunna P, Wyckens E (2005) SAMVIQ—a new EBU methodology for video quality evaluations in multimedia. SMPTE Mot Imag 114:152–160

    Article  Google Scholar 

  30. Lambooij M (2011) IJsselsteijn W, Bouwhuis DG, Heynderickx I (2011) Evaluation of stereoscopic images: beyond 2D quality. IEEE Trans Broadcast 57(2):432–444

    Article  Google Scholar 

  31. Lambooij M, IJsselsteijn W, Heynderickx I (2011) Visual discomfort of 3D-TV: assessment methods and modeling. Displays 32:209–218

    Google Scholar 

  32. Lebreton P, Raake A, Barkowsky M, Callet PL (2012) Evaluating depth perception of 3D stereoscopic videos. IEEE J Sel Top Sig Process 6:710–720

    Article  Google Scholar 

  33. Lebreton P, Raake A, Barkowsky M, Callet PL (2011) A subjective evaluation of 3D IPTV broadcasting implementations considering coding and transmission degradation. In: IEEE international workshop on Multimedia Quality of Experience, MQoE11. Dana Point

    Google Scholar 

  34. Lebreton P, Raake A, Barkowsky M, Callet PL (2012) Perceptual depth indicator for S-3D content based on binocular and monocular cues. In: Asilomar. Pacific Grove

    Google Scholar 

  35. Lebreton P, Raake A, Barkowsky M, Callet PL (2013) Perceptual preference of S3D over 2D for HDTV in dependence of video quality and depth. In: IVMSP workshop: 3D image/video technologies and applications. Seoul, Korea

    Google Scholar 

  36. Lee JS, Goldmann L, Ebrahimi T (2012) Paired comparison-based subjective quality assessment of stereoscopic images. Multimedia Tools Appl 1–18.

    Google Scholar 

  37. Li J, Barkowsky M, Callet PL (2012) Analysis and improvement of a paired comparison method in the application of 3DTV subjective experiment. In: IEEE International Conference on Image Processing (ICIP), Orlando

    Google Scholar 

  38. Li J, Barkowsky M, Wang J, Callet PL (2011) Study on visual discomfort induced by stimulus movement at fixed depth on stereoscopic displays using shutter glasses. In: 17th international conference on digital signal processing. Corfu, Grece

    Google Scholar 

  39. Lovell PG, Bloj M, Harris JM (2012) Optimal integration of shading and binocular disparity for depth perception. J Vision 12:1–18

    Article  Google Scholar 

  40. Matthias CC, Kunter M, Knorr S, SikoraT (2004) A hybrid approach for error concealment in stereoscopic images. In: 5th international workshop on image analysis for multimedia interactive services

    Google Scholar 

  41. Pastoor S, Wopking M (1997) 3-D displays: a review of current technologies. Displays Technol Appl 2(17):100–110

    Google Scholar 

  42. Richardt C, Swirski L, Davies IP, Dodgson NA (2011) Predicting stereoscopic viewing comfort using a coherence-based computational model. In: Computational aesthetics in graphics, visualization, and imaging

    Google Scholar 

  43. Robinson TR, Toronto BA (1896) Light intensity and depth perception. Am J Psychol 7(4):518–532

    Article  Google Scholar 

  44. Ross MG, Oliva A (2010) Estimating perception of scene layout properties from global image features. J Vision 10(1):2, 1–25

    Google Scholar 

  45. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47:7–42

    Article  MATH  Google Scholar 

  46. Seuntiëns PJ (2006) Visual experience of 3D-TV. Ph.D. Thesis, Eindhoven University

    Google Scholar 

  47. Society for information display (2012) Information display measurement standard. International Committee for display metrology

    Google Scholar 

  48. Sohn H, Jung YJ, Lee S, Man Y (2013) Predicting visual discomfort using object size and disparity information in stereoscopic images. IEEE Trans Broadcast 59(1):28–37

    Article  Google Scholar 

  49. Speranza F, Tam WJ, Renaud R, Hur N (2006) Effect of disparity and motion on visual comfort of stereoscopic images. In: Stereoscopic displays and virtual reality systems XIII, vol 6055

    Google Scholar 

  50. Stelmach L, Tam WJ, Meegan D, Vincent A (2000) Stereo image quality: effects of mixed spatio-temporal resolution. IEEE Trans Circuits Syst Video Technol 10(2):188–193

    Article  Google Scholar 

  51. Strohmeier D, Jumisko-Pyykkö S, Kunze K (2010) Open profiling of quality: a mixed method approach to understanding multimodal quality perception. Adv Multimedia 2010:1–28

    Article  Google Scholar 

  52. Vetro A, Tourapis AM, Müller K, Chen T (2011) 3D-TV content storage and transmission. IEEE Trans Broadcast Spec Issue 3D-TV Horizon: Contents Syst Visual Percept 57(2):384–394

    Google Scholar 

  53. Wagemans J, van Doorn AJ, Koenderink JJ (2011) Pictorial depth probed through relative sizes. i-Perception 2:992–1013

    Google Scholar 

  54. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  55. Wang K, Barkowsky M, Brunnström K, Sjöström M, Cousseau R, Callet PL (2012) Perceived 3D TV transmission quality assessment: multi-laboratory results using absolute category rating on quality of experience scale. IEEE Trans Broadcast 58:544–557

    Google Scholar 

  56. Wang J, BarkowskyM, Ricordel V, Callet PL (2011) Quantifying how the combination of blur and disparity affects the perceived depth. In: Proceedings of the SPIE. Human vision and electronic imaging XVI, vol 7865. pp 78650K–78650K-10

    Google Scholar 

  57. Wang K, Brunnström K, Barkowsky M, Le Callet P, Sjöström M, Tourancheau S (2013) Stereoscopic 3D video coding artifacts quality evaluation with 2D objective metrics. In: Stereoscopic displays and applications XXIV, vol 8648

    Google Scholar 

  58. Watt SJ, Akeley K, Ernst MO, Banks MS (2005) Focus cues affect perceived depth. J Vision 5(10):834–862

    Article  Google Scholar 

  59. 3D Week 2009.10. 11-18. Retrieved 2009–11-18. Glasses that will work for Channel 4’s 3D week are the Amber and Blue Colour Code 3D glasses

    Google Scholar 

  60. Wei C, Fournier J, Barkowsky M, Callet PL (2012) Exploration of quality of experience of stereoscopic images: binocular depth. In: International workshop on video processing and quality metrics for consumer electronics (VPQM). Scottsdale

    Google Scholar 

  61. Yamagishi K, Karam L, Okamoto J, Hayashi T (2011) Subjective characteristics for stereoscopic high definition video. In: Third international workshop on Quality of Multimedia Experience (QoMEX). Mechelen, Belgium

    Google Scholar 

  62. Yamanoue H, Okui M, Yuyama I (2000) A study on the relationship between shooting conditions and cardboard effect of stereoscopic images. IEEE Trans Circuits Syst Video Technol 10(3):411–416. doi:10.1109/76.836285

    Article  Google Scholar 

  63. Yamanoue H, Okui M, Okano F (2006) Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images. IEEE Trans Circuits Syst Video Technol 16:744–752

    Article  Google Scholar 

  64. Yano S, Emoto M, Mitsuhashi T (2004) Two factors in visual fatigue caused by stereoscopic HDTV images. Displays 25:141–150

    Article  Google Scholar 

  65. Yasakethu S, Silva DD, Fernando W, Kondoz A (2010) Predicting sensation of depth in 3D video. Electron Lett 46(12):837–839

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lebreton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lebreton, P., Barkowsky, M., Raake, A., Le Callet, P. (2014). 3D Video. In: Möller, S., Raake, A. (eds) Quality of Experience. T-Labs Series in Telecommunication Services. Springer, Cham. https://doi.org/10.1007/978-3-319-02681-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02681-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02680-0

  • Online ISBN: 978-3-319-02681-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics