Skip to main content

Audio Transmission

  • Chapter
  • First Online:
Book cover Quality of Experience

Part of the book series: T-Labs Series in Telecommunication Services ((TLABS))

Abstract

Audio with good quality is the essential fundament for all multi-media services. The transmission of audio signals relies on efficient encoding and decoding algorithms (codecs) that enable the reduction of the required channel capacity, but still provide an excellent audio quality, even when transmission errors occur. The most succesfull audio codecs are mp2, mp3, aac and ac3. The codecs employ sophisticated signal processing algorithms imitating properties of hearing. The processing may cause specific artifacts such as high frequency loss, narrow-band noise and pre-echoes. The final quality needs to be verified with statistically valid listening tests. Detailed procedures for conducting reliable speech and audio tests are defined in ITU Recommendations P.800, BS.1116, and BS.1534. Instrumental measurement methods such as BS.1387 replicate subjective tests allowing the estimation of the perceived quality. The ITU Recommendation P.1201 is a recently standardized method for estimating the audio quality of a transmitted signal without the need to have a reference signal available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EBU Document BPN 019 (1998) Report on the EBU subjective listening tests of multichannel audio codecs

    Google Scholar 

  2. EBU Document Tech3296 (2003) EBU subjective listening test on low-bitrate audio codecs

    Google Scholar 

  3. 3GPP TR 26.936 (2008) Performance characterization of 3GPP audio codecs. www.3GPP.org

  4. Bech S, Zacharov N (2006) Perceptual audio evaluation. Theory, method and application. Wiley, New York

    Book  Google Scholar 

  5. Bosi M, Brandenburg K, Quackenbush S, Fielder L, Akagiri K, Fuchs H, Dietz M, Herre J, Davidson G, Oikawa (1996) MPEG-2 advanced audio coding. In: Proceedings of the 101st Audio Engineering Society (AES) convention

    Google Scholar 

  6. Brandenburg K, Stoll G, Dehéry YF, Johnston JD, Kerkhof Lvd, Schroeder EF (1992) The ISO/MPEG-audio codec: a generic standard for coding of high quality digital audio. In: Proceedings of the 92th Audio Engineering Society (AES) convention

    Google Scholar 

  7. Broom S (2006) VoIP: quality assessment: taking account of the edge-device. IEEE Trans ASLP 14(6):1977–1983

    Google Scholar 

  8. Campbell D, Jones E, Glavin M (2009) Audio quality assessment—a review, and recent developments. Signal Process 89:1489–1500

    Article  MATH  Google Scholar 

  9. Clark A (2001) Modeling the effects of burst packet loss and recency on subjective voice quality internet telephony workshop (IPtel)

    Google Scholar 

  10. Clark A (2003) ITU-T Delayed Contribution COM12-D105: Description of VQMON algorithm

    Google Scholar 

  11. Egi N, Hayashi T, Takahashi A (2010) Parametric packet-layer model for evaluation audio quality in multimedia streaming services. IEICE Trans Commun E93.B:1359–1366

    Article  Google Scholar 

  12. Erne M (2001) Perceptual audio coders: what to listen for. In: Proceedings of the 111th Audio Engineering Society (AES) convention

    Google Scholar 

  13. Feiten B (1997) Measuring the coding margin of perceptual codecs with the difference signal. In: Proceedings of the 102nd Audio Engineering Society (AES) convention

    Google Scholar 

  14. Feiten B, Raake A, Garcia MN, Wüstenhagen U, Kroll J (2009) Subjective quality evaluation of audio streaming applications on absolute and paired rating scales. In: Proceedings of the 126th Audio Engineering Society (AES) convention

    Google Scholar 

  15. Gabrielsson A, Sjogren H (1979) Perceived sound quality of sound-reproduction systems. J Acoust Soc Am 65(4):1019–1033

    Google Scholar 

  16. Garcia MN, Raake A, Feiten B (2013) Parametric audio quality model for IPTV services—ITU-T P.1201.2 audio. In: Proceedings international workshop on Quality of Multimedia Experience (QoMEX)

    Google Scholar 

  17. Graubner M et al (2010) QoE assessment for audio contribution over IP (ACIP). In: Proceedings of the 38th AES international conference on sound quality evaluation

    Google Scholar 

  18. Herre J (2007) Temporal noise shaping, quantization and coding methods in perceptual audio coding: a tutorial introduction. In: Proceedings of the AES 17th international conference on high quality audio coding, pp 1–14

    Google Scholar 

  19. Herre J, Dietz M (2008) Standards in a nutshell: MPEG-4 high-efficiency AAC coding. IEEE Signal Process Mag 25:137–142

    Article  Google Scholar 

  20. Herre J et al (2008) MPEG surround—the ISO/MPEG standard for efficient and compatible multichannel audio coding. J AES 56:932–955

    Google Scholar 

  21. Horbach U, Boone MM (1999) Future transmission and rendering formats for multichannel sound. In: Proceedings of the AES 16th international conference on spatial sound, reproduction, pp 409–418

    Google Scholar 

  22. ISO/IEC 11172–3 (1993) Coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s—part 3: audio

    Google Scholar 

  23. ISO/IEC 13818–3 (1995) Generic coding of moving pictures and associated audio: audio

    Google Scholar 

  24. ISO/IEC 13818–7 (2006) Generic coding of moving pictures and associated audio: advanced audio coding

    Google Scholar 

  25. ISO/IEC 14496–3 (2006) Information technology—coding of audio-visual objects—part 3: audio

    Google Scholar 

  26. ITU-R Rec. BS.1116-1 (1994–1997) Methods for the subjective assessment of small impairments in audio systems including multichannel sound systems

    Google Scholar 

  27. ITU-R Rec. BS.1284 (1997–2003) General methods for the subjective assessment of sound quality

    Google Scholar 

  28. ITU-R Rec. BS.1286 (1997) Methods for the subjective assessment of audio systems with accompanying picture

    Google Scholar 

  29. ITU-R Rec. BS.1534-1 (2001–2003) Method for the subjective assessment of intermediate quality levels of coding systems

    Google Scholar 

  30. ITU-T BS.1387 (2001) Method for objective measurements of perceived audio quality

    Google Scholar 

  31. ITU-T GSTP-GVBR (2010) Performance of ITU-T G.718. Series G: transmission systems and media, digital systems and networks

    Google Scholar 

  32. ITU-T Recommendation P.1201 (2012) Parametric non-intrusive assessment of audiovisual media streaming quality

    Google Scholar 

  33. ITU-T Recommendation P.1201.1 (2012) Parametric non-intrusive assessment of audiovisual media streaming quality—lower resolution application area

    Google Scholar 

  34. ITU-T Recommendation P.1201.2 (2012) Parametric non-intrusive assessment of audiovisual media streaming quality—higher resolution application area

    Google Scholar 

  35. ITU-T Recommendation G.107 (2011) The E-model: a computational model for use in transmission planning

    Google Scholar 

  36. ITU-T Recommendation P.800 (1996) Methods for subjective determination of transmission quality

    Google Scholar 

  37. Liu C-M, Hsu H-W, Lee W-C (2008) Compression artifacts in perceptual audio coding. IEEE Trans Audio Speech Lang Process (ASLP) 16(4):681–695

    Article  Google Scholar 

  38. Lutzky M et al (2004) A guideline to audio codec delay. In: Proceedings 116th Audio Engineering Society (AES) convention, Berlin

    Google Scholar 

  39. Mattila VV (2002) Descriptive analysis and ideal point modeling of speech quality in mobile communications. In: Proceedings of the 113th audio engineering society (AES) convention, USALos Angeles

    Google Scholar 

  40. Mattila VV (2002) Ideal point modeling of speech quality in mobile communications based on multidimensional scaling. In: Proceedings of the 112th audio engineering society (AES) convention, DMunich

    Google Scholar 

  41. Moller H (1992) Fundamentals of binaural technology. Appl Acoust 36:171–218

    Article  Google Scholar 

  42. Möller S, Chan WY, Côté N, Falk TH, Raake A, Wältermann M (2011) Speech quality estimation, IEEE Signal Process Mag

    Google Scholar 

  43. Myakotnykh ES, Svensson UP (2010) Computational quality model for IP-based audio. In: Proceedings of the 38th AES international conference on sound quality, evaluation

    Google Scholar 

  44. Neuendorf M et al (2009) Unified speech and audio coding scheme for high quality at low bitrates.: In: Proceedings IEEE International Conference on Audio Speech and Signal Processing (ICASSP)

    Google Scholar 

  45. Painter T, Spanias A (2000) Perceptual coding of digital audio. Proc IEEE 88(4):451–515

    Article  Google Scholar 

  46. Perkins C, Hodson O, Hardman V (1998) A survey of packet loss recovery techniques for streaming audio. IEEE Netw 12(5):40–48

    Article  Google Scholar 

  47. Raake A (2006) Short- and long-term packet loss behaviour: towards speech quality prediction for arbitrary loss distributions, IEEE Trans ASLP 14(6):1957–1968

    Google Scholar 

  48. Raake A, Wältermann M, Wüstenhagen U, Feiten B (2012) How to talk about speech and audio quality with speech and audio people? J Audio Eng Soc 60(3):147–155

    Google Scholar 

  49. Raake A, Blauert J (2013) Comprehensive modeling of the formation process of sound-quality. In: Proceedings international workshop on Quality of Multimedia Experience (QoMEX), Klagenfurt, Austria

    Google Scholar 

  50. Reichl P, Egger S, Schatz R, D’Alconzo A (2010) The logarithmic nature of QoE and the role of the Weber-Fechner Law in QoE assessment. In: Proceedings IEEE International Conference on Communications (ICC)

    Google Scholar 

  51. Rix AW, Beerends JG, Kim D-S (2006) Objective assessment of speech and audio quality—technology and applications. IEEE Trans ASLP 14(6):1890–1901

    Google Scholar 

  52. Rumsey F (2002) Spatial quality evaluation for reproduced sound: terminology, meaning, and a scene-based paradigm. J Audio Eng Soc 50(9):651–666

    Google Scholar 

  53. Sackl A, Egger S, Schatz R (2013) Where’s the music? Comparing the QoE impact of temporal impairments between music and video streaming. In: Proceedings international workshop on Quality of Multimedia Experience (QoMEX)

    Google Scholar 

  54. Schobben D, van de Par S (2004) The effect of room acoustics on MP3 audio quality evaluation. In: Proceedings of the 117th audio engineering society (AES) convention, USASan Francisco, 28–31 Oct 2004

    Google Scholar 

  55. Schuller G, Yu B (2002) Perceptual audio coding using adaptive pre and post-filters and lossless compression. IEEE Trans Speech Audio Process 10(6):379–390

    Article  Google Scholar 

  56. Smirnoff S (2005) Difference level. An objective audio parameter. In: 118th AES-convention

    Google Scholar 

  57. Spors S, Wierstorf H, Raake A, Melchior F, Frank M, Zotter F (2013) Spatial sound with loudspeakers and its perception: a review of the current state. Proc IEEE 101(9):1920–1938

    Article  Google Scholar 

  58. Thiede T, Treurniet WC, Bitto R, Schmidmer C, Sporer T, Beerends JG, Colomes C, Keyhl M, Stoll G, Brandenburg K, Feiten B (2000) PEAQ—the ITU standard for objective measurement of perceived audio quality. J Audio Eng Soc (AES) 48(1/2):3–29

    Google Scholar 

  59. Toole F (2008) Sound reproduction: the acoustics and psychoacoustics of loudspeakers and rooms. Focal Press

    Google Scholar 

  60. Website sound expert. http://soundexpert.org

  61. Wüstenhagen U, Feiten B, Hoeg W (1998) Subjective listening test of multichannel audio codecs. AES Conv 105:P4813

    Google Scholar 

  62. Zielinski S, Rumsey F, Bech S (2008) On some biases encountered in modern audio quality listening tests—a review. J Audio Eng Soc 56(6):427–451

    Google Scholar 

  63. Zwicker E, Fastl H (1999) Psychoacoustics. Facts and models, 2nd edn. Springer, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Feiten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Feiten, B., Garcia, MN., Svensson, P., Raake, A. (2014). Audio Transmission. In: Möller, S., Raake, A. (eds) Quality of Experience. T-Labs Series in Telecommunication Services. Springer, Cham. https://doi.org/10.1007/978-3-319-02681-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02681-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02680-0

  • Online ISBN: 978-3-319-02681-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics