Skip to main content

Unsupervised Learning Spatio-temporal Features for Human Activity Recognition from RGB-D Video Data

  • Conference paper
Social Robotics (ICSR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8239))

Included in the following conference series:

Abstract

Being able to recognize human activities is essential for several applications, including social robotics. The recently developed commodity depth sensors open up new possibilities of dealing with this problem. Existing techniques extract hand-tuned features, such as HOG3D or STIP, from video data. They are not adapting easily to new modalities. In addition, as the depth video data is low quality due to the noise, we face a problem: does the depth video data provide extra information for activity recognition? To address this issue, we propose to use an unsupervised learning approach generally adapted to RGB and depth video data. we further employ the multi kernel learning (MKL) classifier to take into account the combinations of different modalities. We show that the low-quality depth video is discriminative for activity recognition. We also demonstrate that our approach achieves superior performance to the state-of-the-art approaches on two challenging RGB-D activity recognition datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laptev, I.: On space-time interest points. Int. J. Comput. Vision 64(2-3), 107–123 (2005)

    Article  Google Scholar 

  2. Laptev, I., Marszałek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Conference on Computer Vision & Pattern Recognition (June 2008)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)

    Google Scholar 

  4. Wang, H., Ullah, M.M., Kläser, A., Laptev, I., Schmid, C.: Evaluation of local spatio-temporal features for action recognition. In: British Machine Vision Conference, p. 127 (September 2009)

    Google Scholar 

  5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  7. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: NIPS, pp. 801–808 (2007)

    Google Scholar 

  8. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 153–160. MIT Press, Cambridge (2007)

    Google Scholar 

  9. Hyvrinen, A., Hurri, J., Hoyer, P.O.: Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, 1st edn. Springer Publishing Company, Incorporated (2009)

    Google Scholar 

  10. Socher, R., Huval, B., Bath, B.P., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep learning for 3d object classification. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) NIPS, pp. 665–673 (2012)

    Google Scholar 

  11. Le, Q., Zou, W., Yeung, S., Ng, A.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3361–3368 (2011)

    Google Scholar 

  12. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 221–231 (2013)

    Article  Google Scholar 

  13. Zhang, H., Parker, L.: 4-dimensional local spatio-temporal features for human activity recognition. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2044–2049 (2011)

    Google Scholar 

  14. Xia, L., Chen, C.C., Aggarwal, J.: View invariant human action recognition using histograms of 3d joints. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 20–27 (2012)

    Google Scholar 

  15. Yang, X., Tian, Y.: Eigenjoints-based action recognition using nave-bayes-nearest-neighbor. In: CVPR Workshops, pp. 14–19. IEEE (2012)

    Google Scholar 

  16. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1290–1297 (2012)

    Google Scholar 

  17. Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences (June 2013)

    Google Scholar 

  18. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Computation 1, 541–551 (1989)

    Article  Google Scholar 

  19. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks, pp. 153–160 (2007)

    Google Scholar 

  20. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifier, pp. 61–74. MIT Press (1999)

    Google Scholar 

  21. Kamarainen, J.K., Kyrki, V., Kälviäinen, H.: Invariance properties of Gabor filter based features - overview and applications. IEEE Transactions on Image Processing 15(5), 1088–1099 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, G., Zhang, F., Giuliani, M., Buckl, C., Knoll, A. (2013). Unsupervised Learning Spatio-temporal Features for Human Activity Recognition from RGB-D Video Data. In: Herrmann, G., Pearson, M.J., Lenz, A., Bremner, P., Spiers, A., Leonards, U. (eds) Social Robotics. ICSR 2013. Lecture Notes in Computer Science(), vol 8239. Springer, Cham. https://doi.org/10.1007/978-3-319-02675-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02675-6_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02674-9

  • Online ISBN: 978-3-319-02675-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics