Skip to main content

Introduction: Molecular Electronics

  • Chapter
  • First Online:
Book cover Electronic Structure of Metal Phthalocyanines on Ag(100)

Part of the book series: Springer Theses ((Springer Theses))

Abstract

“Small is Beautiful”, is a statement coming originally from the world of economics [1]. It nevertheless holds true when it comes to technology. Small is beautiful, because small is fast and small is cheap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.F. Schumacher, Small Is Beautiful: Economics as if People Mattered, 2nd edn. (Harper Perennial, New York, 1989), ISBN 0060916303

    Google Scholar 

  2. G. Moore et al., Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)

    Article  Google Scholar 

  3. R.P. Feynman, There’s plenty of room at the bottom (1959), http://calteches.library.caltech.edu/47/2/1960Bottom.pdf

  4. B. Cui, Recent Advances in Nanofabrication Techniques and Applications, (InTech, Rijeka, 2011), ISBN 978-953-307-602-7. doi:10.5772/859

  5. A.E. Grigorescu, C.W. Hagen, Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art. Nanotechnol. 20(29), 292001 (2009). doi:10.1088/0957-4484/20/29/292001

    Google Scholar 

  6. T. Ito, S. Okazaki, Pushing the limits of lithography. Nature. 406(6799), 1027–1031 (2000). doi:10.1038/35023233

    Google Scholar 

  7. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Launois, Electron beam lithography: resolution limits and applications, Appl. Surf. Sci. 164(1–4), 111–117 (2000). doi:10.1016/S0169-4332(00)00352-4

  8. J.V. Barth, G. Costantini, K. Kern, Engineering atomic and molecular nanostructures at surfaces. Nature 437(7059), 671–679 (2005). doi:10.1038/nature04166

    Google Scholar 

  9. C.A. Mack, Line-edge roughness and the ultimate limits of lithography. Proc. SPIE Adv. Resist Mater. Process. Technol. XXVII 7639, 763931 (2010). doi:10.1117/12.848236

  10. S.R. Forrest, Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97(6), 1793–1896 (1997). doi:10.1021/cr941014o

    Google Scholar 

  11. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990). doi:10.1038/347539a0

    Google Scholar 

  12. J. Liu, L.N. Lewis, A.R. Duggal, Photoactivated and patternable charge transport materials and their use in organic light-emitting devices. Appl. Phys. Lett. 90, 233503 (2007) doi:10.1063/1.2746404

  13. M. Granstrom, K. Petritsch, A.C. Arias, A. Lux, M.R. Andersson, R.H. Friend, Laminated fabrication of polymeric photovoltaic diodes. Nature 395(6699), 257–260 (1998). doi:10.1038/26183

    Google Scholar 

  14. P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425(6954), 158–162 (2003). doi:10.1038/nature01949

    Google Scholar 

  15. P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/\(\text{ C }_{60}\) photovoltaic cells. Appl. Phys. Lett. 79, 126 (2001). doi:10.1063/1.1384001

    Google Scholar 

  16. L. Torsi, A. Dodabalapur, L. Sabbatini, P. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators, B 67(3), 312–316 (2000). doi:10.1016/S0925-4005(00)00541-4

  17. M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002). doi:10.1063/1.1491009

    Google Scholar 

  18. J.R. Heath, M.A. Ratner, Molecular electronics. Phys. Today 56, 43 (2003). doi:10.1063/1.1583533

    Google Scholar 

  19. K. Suto, S. Yoshimoto, K. Itaya, Two-dimensional self-organization of phthalocyanine and porphyrin: dependence on the crystallographic orientation of Au. J. Am. Chem. Soc. 125(49), 14976–14977 (2003). doi:10.1021/ja038857u

  20. D. Heim, D. Écija, K. Seufert, W. Auwärter, C. Aurisicchio, C. Fabbro, D. Bonifazi, J.V. Barth, Self-assembly of flexible one-dimensional coordination polymers on metal surfaces. J. Am. Chem. Soc. 132(19), 6783–6790 (2010). doi:10.1021/ja1010527

    Google Scholar 

  21. F. Buchner, I. Kellner, W. Hieringer, A. Görling, H. Steinrück, H. Marbach, Ordering aspects and intramolecular conformation of tetraphenylporphyrins on Ag(111). Phys. Chem. Chem. Phys. 12(40), 13082–13090 (2010). doi:10.1039/C004551A

    Google Scholar 

  22. S. Weigelt, C. Busse, C. Bombis, M.M. Knudsen, K.V. Gothelf, T. Strunskus, C. Wöll, M. Dahlbom, B. Hammer, E. Lægsgaard, F. Besenbacher, T.R. Linderoth, Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46(48), 9227–9230 (2007). doi:10.1002/anie.200702859

    Google Scholar 

  23. C. Wäckerlin, D. Chylarecka, A. Kleibert, K. Müller, C. Iacovita, F. Nolting, T.A. Jung, N. Ballav, Controlling spins in adsorbed molecules by a chemical switch. Nat. Commun. 1, 61 (2010). doi:10.1038/ncomms1057

  24. T. Ikeda, O. Tsutsumi, Optical switching and image storage by means of azobenzene Liquid-Crystal films. Science 268(5219), 1873–1875 (1995). doi:10.1126/science.268.5219.1873

    Google Scholar 

  25. J. Henzl, M. Mehlhorn, H. Gawronski, K. Rieder, K. Morgenstern, Reversible cis-trans isomerization of a single azobenzene molecule. Angew. Chem. Int. Ed. 45(4), 603–606 (2006). doi:10.1002/anie.200502229

    Google Scholar 

  26. L. Grill, M. Dyer, L. Lafferentz, M. Persson, M.V. Peters, S. Hecht, Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007). doi:10.1038/nnano.2007.346

    Google Scholar 

  27. A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974). doi:10.1016/0009-2614(74)85031-1

    Google Scholar 

  28. C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, C. Joachim, Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59(19), 12505–12513 (1999). doi:10.1103/PhysRevB.59.12505

    Google Scholar 

  29. A. Nitzan, M.A. Ratner, Electron transport in molecular wire junctions. Science 300(5624), 1384–1389 (2003)

    Article  ADS  Google Scholar 

  30. N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173–181 (2006). doi:10.1038/nnano.2006.130

    Google Scholar 

  31. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, P.L. McEuen, D.C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417(June), 722 (2002)

    Article  ADS  Google Scholar 

  32. S.M. Lindsay, M.A. Ratner, Molecular transport junctions: clearing mists. Adv. Mater. 19(1), 23–31 (2007). doi:10.1002/adma.200601140

    Google Scholar 

  33. L.H. Yu, D. Natelson, Transport in single-molecule transistors: kondo physics and negative differential resistance. Nanotechnol. 15(10), S517 (2004). doi:10.1088/0957-4484/15/10/004

  34. A.A. Houck, J. Labaziewicz, E.K. Chan, J.A. Folk, I.L. Chuang, Kondo effect in electromigrated gold break junctions. Nano Lett. 5(9), 1685–1688 (2005). doi:10.1021/nl050799i

    Google Scholar 

  35. M.N. Baibich, J.M. Broto, A. Fert, F.N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988). doi:10.1103/PhysRevLett.61.2472

    Google Scholar 

  36. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39(7), 4828–4830 (1989). doi:10.1103/PhysRevB.39.4828

    Google Scholar 

  37. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S.v. Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). doi:10.1126/science.1065389

    Google Scholar 

  38. S. Sanvito, Molecular spintronics. Chem. Soc. Rev. 40(6), 3336 (2011). doi:10.1039/c1cs15047b

  39. R. Jain, K. Kabir, J.B. Gilroy, K.A.R. Mitchell, K.-c. Wong, R.G. Hicks, High-temperature metal-organic magnets. Nature 445(January), 291–294 (2007)

    Google Scholar 

  40. W. Liang, M.P. Shores, M. Bockrath, J.R. Long, H. Park, Kondo resonance in a single-molecule transistor. Nature 417(June), 725–729 (2002). doi:10.1038/nature00790

    Google Scholar 

  41. J.J. Parks, A.R. Champagne, T.A. Costi, W.W. Shum, A.N. Pasupathy, E. Neuscamman, S. Flores-Torres, P.S. Cornaglia, A.A. Aligia, C.A. Balseiro, G.K. Chan, H.D. Abruña, D.C. Ralph, Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328(5984), 1370–1373 (2010). doi:10.1126/science.1186874

    Google Scholar 

  42. N.B. McKeown, Phthalocyanine Materials: Synthesis, Structure, and Function, (Cambridge University Press, Cambridge, 1998), ISBN 9780521496230

    Google Scholar 

  43. J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl. Phys. Lett. 73(6), 729–731 (1998). doi:10.1063/1.121982

    Google Scholar 

  44. Y. Qiu, Y. Gao, P. Wei, L. Wang, Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells. Appl. Phys. Lett. 80(15), 2628–2630 (2002). doi:10.1063/1.1468894

    Google Scholar 

  45. S. Uchida, J. Xue, B.P. Rand, S.R. Forrest, Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: \(\text{ C }_60\) active layer. Appl. Phys. Lett. 84(21), 4218–4220 (2004). doi:10.1063/1.1755833

    Google Scholar 

  46. T. Kume, S. Hayashi, H. Ohkuma, K. Yamamoto, Enhancement of photoelectric conversion efficiency in copper phthalocyanine solar cell: white light excitation of surface plasmon polaritons. Jpn. J. Appl. Phys. 34(Part 1, 12A), 6448–6451 (1995). doi:10.1143/JJAP.34.6448

  47. C.J. Chen, Introduction to Scanning Tunneling Microscopy, (Oxford University Press, New York, 1993), ISBN 0195071506 9780195071504. http://www.columbia.edu/jcc2161/documents/STM_2ed.pdf

  48. J. Gimzewski, E. Stoll, R. Schlittler, Scanning tunneling microscopy of individual molecules of copper phthalocyanine adsorbed on polycrystalline silver surfaces. Surf. Sci. 181(1–2), 267–277 (1987). doi:10.1016/0039-6028(87)901671-1

    Google Scholar 

  49. H. Ohtani, R.J. Wilson, S. Chiang, C.M. Mate, Scanning tunneling microscopy observations of benzene molecules on the Rh(111)-(3 \(\times \) 3) (\(\text{ C }_{6} \text{ H }_{6}\) + 2CO) surface. Phys. Rev. Lett. 60(23), 2398–2401 (1988). doi:10.1103/PhysRevLett.60.2398

  50. P.H. Lippel, R.J. Wilson, M.D. Miller, C. Wöll, S. Chiang, High-Resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62(2), 171–174 (1989). doi:10.1103/PhysRevLett.62.171

    Google Scholar 

  51. F. Moresco, Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399(4), 175–225 (2004). doi:16/j.physrep.2004.08.001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Krull .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Krull, C. (2014). Introduction: Molecular Electronics. In: Electronic Structure of Metal Phthalocyanines on Ag(100). Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-02660-2_1

Download citation

Publish with us

Policies and ethics