Skip to main content

Background and Literature Survey

  • Chapter
  • First Online:
Sustainable Wireless Networks

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 559 Accesses

Abstract

In the last decade, a large number of works on energy-efficient, high-quality and low-cost wireless access services have shown up (Cai et al., IEEE Wireless Communications, 2011; Chen et al., IEEE Communications Magazine, 2012; Asefi et al., IEEE Transactions on Wireless Communications, 2012). Generally, these solutions can be divided into two classes, namely, customer-oriented and infrastructure-oriented solutions. Customer devices, e.g., wireless sensor nodes (Akyildiz et al., Computer Networks, 2002) and mobile terminals, usually are powered by batteries. Thus, the research objective of customer-oriented solutions mainly focus on improving energy efficiency to prolong the battery lifetime by various methods including energy-efficient software applications (Pantazis and Vergados, IEEE Communications Surveys & Tutorials, 2007), hardware design (Hempstead et al., Journal of Low Power Electronics, 2008), and protocol improvements (Akkaya and Younis, Ad hoc networks, 2005). Compared with customer devices, the network infrastructure contributes to the dominant portion of the total energy consumption of the system. For example, the BSs consume 60–80 % of the network’s energy consumption (Marsan et al., IEEE ICC Workshops, 2009; Oh et al., IEEE Communications Magazine, 2011). Therefore, it is more important to reduce energy consumption of the infrastructure in order to improve the energy efficiency of the overall system. To sustain the wireless operations, one promising solution is to use green energy to power the infrastructure network devices. In such a sustainable network, the research objective and performance metric are changed from energy efficiency to energy sustainability, i.e., to ensure harvested energy can sustain the normal network operations. We categorize the existing works in the literature related on sustainable wireless networks into three research issues: (1) network planning, (2) energy modeling, and (3) resource allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. X. Cai, H. V. Poor, Y. Liu, T. H. Luan, X. Shen, and J. W. Mark, “Dimensioning network deployment and resource management in green mesh networks,” IEEE Wireless Communications, vol. 18, no. 5, pp. 58–65, Oct. 2011.

    Article  Google Scholar 

  2. Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” IEEE Communications Magazine, vol. 49, no. 6, pp. 30–37, Jun. 2011.

    Article  Google Scholar 

  3. M. Asefi, J. W. Mark, and X. Shen, “A mobility-aware and quality-driven retransmission limit adaptation scheme for video streaming over VANETs,” IEEE Transactions on Wireless Communications, vol. 11, no. 5, pp. 1817–1827, May. 2012.

    Article  Google Scholar 

  4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–422, Mar. 2002.

    Article  Google Scholar 

  5. N. A. Pantazis and D. D. Vergados, “A survey on power control issues in wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol. 9, no. 4, pp. 86–107, 2007.

    Article  Google Scholar 

  6. M. Hempstead, M. J. Lyons, D. Brooks, and G. Y. Wei, “Survey of hardware systems for wireless sensor networks,” Journal of Low Power Electronics, vol. 4, no. 1, pp. 11–20, Apr. 2008.

    Article  Google Scholar 

  7. K. Akkaya and M. Younis, “A survey on routing protocols for wireless sensor networks,” Ad hoc networks, vol. 3, no. 3, pp. 325–349, May. 2005.

    Article  Google Scholar 

  8. M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal energy savings in cellular access networks,” in IEEE ICC Workshops, Dresden, DE, 14-18 Jun. 2009.

    Google Scholar 

  9. E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Toward dynamic energy-efficient operation of cellular network infrastructure,” IEEE Communications Magazine, vol. 49, pp. 56–61, Jun. 2011.

    Article  Google Scholar 

  10. J. Pan, L. Cai, Y. Shi, and X. Shen, “Optimal base-station locations in two-tiered wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 5, pp. 458–473, Sep.-Oct. 2005.

    Article  Google Scholar 

  11. M. Soleimanipour, W. Zhuang, and G. H. Freeman, “Optimal resource management in wireless multimedia wideband CDMA systems,” IEEE Transactions on Mobile Computing, vol. 1, no. 2, pp. 143–160, Apr.-Jun. 2002.

    Article  Google Scholar 

  12. B. Lin, P. Ho, L. Xie, X. Shen, and J. Tapolcai, “Optimal relay station placement in broadband wireless access networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 2, pp. 259–269, Feb. 2010.

    Article  Google Scholar 

  13. X. Ling and K. L. Yeung, “Joint access point placement and channel assignment for 802.11 wireless LANs,” IEEE Transactions on Wireless Communications, vol. 5, no. 10, pp. 2705–2711, Oct. 2006.

    Article  Google Scholar 

  14. M. Unbehaun and M. Kamenetsky, “On the deployment of picocellular wireless infrastructure,” IEEE Wireless Communications, vol. 10, no. 6, pp. 70–80, Dec. 2003.

    Article  Google Scholar 

  15. Z. Zheng, B. Zhang, X. Jia, J. Zhang, and K. Yang, “Minimum AP placement for WLAN with rate adaptation using physical interference model,” in IEEE Globecom, Miami, FL, USA, 6-10 Dec. 2010, pp. 1–5.

    Google Scholar 

  16. P. G. Brevis, J. Gondzio, Y. Fan, H. V. Poor, J. Thompson, I. Krikidis, and P. J. Chung, “Base station location optimization for minimal energy consumption in wireless networks.” in IEEE VTC, Budapest, HUN, 15-18 May. 2011, pp. 1–5.

    Google Scholar 

  17. W. Zhang, G. Xue, and S. Misra, “Fault-tolerant relay node placement in wireless sensor networks: Problems and algorithms,” in IEEE INFOCOM, Anchorage, AK, USA, 6-12 May. 2007, pp. 1649–1657.

    Google Scholar 

  18. X. Han, X. Cao, E. L. Lloyd, and C. C. Shen, “Fault-tolerant relay node placement in heterogeneous wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 643–656, May. 2010.

    Article  Google Scholar 

  19. Z. Wei, G. Li, and L. Qi, “New quasi-newton methods for unconstrained optimization problems,” Applied Mathematics and Computation, vol. 175, no. 2, pp. 1156–1188, Apr. 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. K. Fu, W. H. Sheen, and F. C. Ren, “Deployment and radio resource reuse in IEEE 802.16j multi-hop relay network in manhattan-like environment,” in IEEE ICICS, Meritus Mandarin Hotel, Singapore, 10-13 Dec. 2007, pp. 1–5.

    Google Scholar 

  21. S. Misra, S. D. Hong, G. Xue, and J. Tang, “Constrained relay node placement in wireless sensor networks: Formulation and approximations,” IEEE/ACM Transactions on Networking, vol. 18, no. 2, pp. 434–447, Apr. 2010.

    Article  Google Scholar 

  22. A. Sayegh, T. D. Todd, and M. Smadi, “Resource allocation and cost in hybrid solar/wind powered WLAN mesh nodes,” Wireless Mesh Networks: Architectures and Protocols, pp. 167–189, 2007.

    Google Scholar 

  23. Z. Zheng, L. X. Cai, M. Dong, X. Shen, and H. V. Poor, “Constrained energy-aware ap placement with rate adaptation in WLAN mesh networks,” in IEEE GLOBECOM, Houston, TX, USA, 5-9 Dec. 2011, pp. 1–5.

    Google Scholar 

  24. S. A. Shariatmadari, A. A. Sayegh, and T. D. Todd, “Energy aware basestation placement in solar powered sensor networks,” in IEEE WCNC, Sydney, AUS, 18-21 Apr. 2010, pp. 1–6.

    Google Scholar 

  25. X. Zhang, Z. Zheng, J. Liu, X. Shen, and L. Xie, “Optimal power allocation and AP deployment in green wireless cooperative communications,” in IEEE GLOBECOM, Anaheim, CA, USA, 3-7 Dec. 2012, pp. 4000–4005.

    Google Scholar 

  26. B. Kan, L. Cai, H. Zhu, and Y. Xu, “Accurate energy model for WSN node and its optimal design,” Journal of Systems Engineering and Electronics, vol. 19, no. 3, pp. 427–433, Jun. 2008.

    Article  Google Scholar 

  27. C. Ma and Y. Yang, “A battery-aware scheme for routing in wireless ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 8, pp. 3919–3932, Oct. 2011.

    Article  Google Scholar 

  28. J. Vazifehdan, R. V. Prasad, M. Jacobsson, and I. Niemegeers, “An analytical energy consumption model for packet transfer over wireless links,” IEEE Communications Letters, vol. 16, no. 1, pp. 30–33, Jan. 2012.

    Article  Google Scholar 

  29. Q. Tang, L. Yang, G. B. Giannakis, and T. Qin, “Battery power efficiency of PPM and FSK in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 4, pp. 1308–1319, Apr. 2007.

    Article  Google Scholar 

  30. H. Su and X. Zhang, “Battery-dynamics driven TDMA MAC protocols for wireless body-area monitoring networks in healthcare applications,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 4, pp. 424–434, May. 2009.

    Article  Google Scholar 

  31. T. J. Kazmierski, G. V. Merrett, L. Wang, B. M. Al-Hashimi, A. S. Weddell, and I. N. Ayala-Garcia, “Modeling of wireless sensor nodes powered by tunable energy harvesters: HDL-based approach,” IEEE Sensors Journal, vol. 12, no. 8, pp. 2680–2689, Jun. 2012.

    Article  Google Scholar 

  32. A. S. Weddell, G. V. Merrett, T. J. Kazmierski, and B. M. Al-Hashimi, “Accurate supercapacitor modeling for energy harvesting wireless sensor nodes,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 12, pp. 911–915, Dec. 2011.

    Article  Google Scholar 

  33. P. T. Venkata, S. N. A. U. Nambi, R. V. Prasad, and I. Niemegeers, “Bond graph modeling for energy-harvesting wireless sensor networks,” Computer, vol. 45, no. 9, pp. 31–38, Sep. 2012.

    Article  Google Scholar 

  34. J. Taneja, J. Jeong, and D. Culler, “Design, modeling, and capacity planning for micro-solar power sensor networks,” in IPSN SPOTS, Apr. 2008.

    Google Scholar 

  35. V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design considerations for solar energy harvesting wireless embedded systems,” in IPSN. Piscataway, NJ, USA: IEEE Press, 2005, p. 64.

    Google Scholar 

  36. K. Ramachandran and B. Sikdar, “A population based approach to model the lifetime and energy distribution in battery constrained wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 28, no. 4, pp. 576–586, Apr. 2010.

    Article  Google Scholar 

  37. K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy harvesting nodes,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1180–1189, Mar. 2012.

    Article  Google Scholar 

  38. M. Erol-Kantarci and H. T. Mouftah, “Suresense: sustainable wireless rechargeable sensor networks for the smart grid,” IEEE Wireless Communications, vol. 19, no. 3, pp. 30–36, Jun. 2012.

    Article  Google Scholar 

  39. G. H. Badawy, A. A. Sayegh, and T. D. Todd, “Energy provisioning in solar-powered wireless mesh networks,” IEEE Transactions on Vehicular Technology, vol. 59, no. 8, pp. 3859–3871, Oct. 2010.

    Article  Google Scholar 

  40. M. S. Zefreh, G. H. Badawy, and T. D. Todd, “Position aware node provisioning for solar powered wireless mesh networks,” in IEEE GLOBECOM, Miami, FL, USA, 6-10 Dec. 2010, pp. 1–6.

    Google Scholar 

  41. W. Tuttlebee, S. Fleccher, D. Lister, T. Farrell, and J. Thompson, “Saving the plannet - the rationale, realities and research of green radio,” International Transfer Pricing Journal, vol. 4, no. 3, Sep. 2010.

    Google Scholar 

  42. C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H. Haas, J. S. Thompson, I. Ku, C. X. Wang, T. A. Le, M. R. Nakhai, J. Zhang, and L. Hanzo, “Green radio: radio techniques to enable energy-efficient wireless networks,” IEEE Communications Magazine, vol. 49, no. 6, pp. 46–54, Jun. 2011.

    Article  Google Scholar 

  43. P. Grant and S. Fletcher, “Mobile basestations: reducing energy,” Engineering & Technology Magazine, vol. 6, no. 2, Feb. 2011.

    Google Scholar 

  44. H. Zhang, A. Gladisch, M. Pickavet, Z. Tao, and W. Mohr, “Energy efficiency in communications,” IEEE Communications Magazine, vol. 48, no. 11, pp. 48–49, Nov. 2010.

    Article  Google Scholar 

  45. L. X. Cai, L. Cai, X. Shen, and J. W. Mark, “Resource management and QoS provisioning for IPTV over mmwave-based WPANs with directional antenna,” Mob. Netw. Appl., vol. 14, no. 2, pp. 210–219, 2009.

    Article  Google Scholar 

  46. A. Liu, Z. Zheng, C. Zhang, Z. Chen, and X. Shen, “Secure and energy-efficient disjoint multi-path routing for WSNs,” IEEE Trans. on Vehicular Technology, vol. 61, no. 7, pp. 3255–3265, 2012.

    Article  Google Scholar 

  47. Y. Liu, L. X. Cai, and X. Shen, “Spectrum-aware opportunistic routing in multi-hop cognitive radio networks,” IEEE J. Selected Areas of Communications, vol. 30, no. 10, pp. 1958–1969, Nov. 2012.

    Article  Google Scholar 

  48. H. T. Cheng and W. Zhuang, “QoS-driven MAC-layer resource allocation for wireless mesh networks with non-altruistic node cooperation and service differentiation,” IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 6089–6103, Dec. 2009.

    Article  Google Scholar 

  49. R. L. Cruz and A. V. Santhanam, “Optimal routing, link scheduling and power control in multi-hop wireless networks,” in IEEE INFOCOM, vol. 1, Mar. 2003, pp. 702–711.

    Google Scholar 

  50. M. Veluppillai, J. W. Mark, and X. Shen, “Performance analysis and power allocation for M-QAM cooperative diversity systems,” IEEE Transactions on Wireless Communications, vol. 9, no. 3, pp. 1237–1247, Mar. 2010.

    Article  Google Scholar 

  51. X. Zhang, L. Xie, and X. Shen, “Energy-efficient transmission and bit allocation schemes in wireless sensor networks,” Int. J. of Sensor Networks (IJSNET), vol. 11, no. 4, pp. 241–249, 2012.

    Article  Google Scholar 

  52. B. Cao, Q. Zhang, J. Mark, L. Cai, and H. Poor, “Toward efficient radio spectrum utilization: user cooperation in cognitive radio networking,” IEEE Network, vol. 26, no. 4, pp. 46–52, Jul. 2012.

    Article  Google Scholar 

  53. M. S. Alam, J. W. Mark, and X. Shen, “Relay selection and resource allocation for multi-user cooperative OFDMA networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2193–2204, May. 2013.

    Article  Google Scholar 

  54. B. J. Choi and X. S. Shen, “Adaptive asynchronous sleep scheduling protocols for delay tolerant networks,” IEEE Transactions on Mobile Computing, vol. 10, no. 9, pp. 1283–1296, Sep. 2011.

    Article  Google Scholar 

  55. Y. Dong and D. Yau, “Adaptive sleep scheduling for energy-efficient movement-predicted wireless communication,” in IEEE International Conference on Network Protocols, Boston, MA, USA, 6-9 Nov. 2005, pp. 1–10.

    Google Scholar 

  56. J. H. Jeon, H. J. Byun, and J. T. Lim, “Joint contention and sleep control for lifetime maximization in wireless sensor networks,” IEEE Communications Letters, vol. 17, no. 2, pp. 269–272, Mar. 2013.

    Article  Google Scholar 

  57. Y. Shi, Y. T. Hou, and A. Efrat, “Algorithm design for base station placement problems in sensor networks,” in ACM QSHINE, Waterloo, ON, CA, 7-9 Aug. 2006.

    Google Scholar 

  58. H. Liang, L. X. Cai, D. Huang, X. Shen, and D. Peng, “A SMDP-based service model for inter-domain resource allocation in mobile cloud networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 5, pp. 2222–2232, Jun. 2012.

    Article  Google Scholar 

  59. A. A. Hammad, G. H. Badawy, T. D. Todd, A. A. Sayegh, and D. Zhao, “Traffic scheduling for energy sustainable vehicular infrastructure,” in IEEE GLOBECOM, Miami, FL, USA, 6-10 Dec. 2010, pp. 1–6.

    Google Scholar 

  60. L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal energy-aware routing for multihop wireless networks with renewable energy sources,” IEEE/ACM Transactions on Networking, vol. 15, no. 5, pp. 1021–1034, Oct. 2007.

    Article  Google Scholar 

  61. A. Farbod and T. D. Todd, “Resource allocation and outage control for solar-powered WLAN mesh networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 8, pp. 960–970, Aug. 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongming Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Zheng, Z., Cai, L., Shen, X. (2013). Background and Literature Survey. In: Sustainable Wireless Networks. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-02469-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02469-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02468-4

  • Online ISBN: 978-3-319-02469-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics