Skip to main content

Constitutive Formulations

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Controversy about the frame indifference principle, the concept of non-local continuum field theories, local constitutive formulations, differential constitutive equations of linear viscoelasticity, Oldroyd, K-BKZ, FENE (Finitely Extensible Non-linear Elastic) class of constitutive equations, Smoluchowski and FokkerPlanck diffusion equations, constant stretch history flows, fading memory and nested integral representations of the stress, order fluids of the integral and differential type, constitutive formulations consistent with thermodynamics, maximization of the rate of dissipation in formulating thermodynamics compatible constitutive structures, Burgers equation which is finding a gradually widening niche in applications, minimum free energy and maximum recoverable work in the case of linearized viscoelastic constitutive structures, implicit constitutive theories, which define the stress field when the viscosity depends for instance on the constitutively undetermined pressure field, and which have found new focus in applications such as elastohydrodynamic lubrication are discussed and progress made is summarized. Canonical forms of Maxwell-like constitutive differential equations and single integral constitutive equations are presented and commented on together with the Hadamard and dissipative type of instabilities they may be subject to.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-02417-2_4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ruggeri T. Can constitutive relations be represented by non-local equations? Q Appl Math. 2012;70(3):597–611.

    MATH  MathSciNet  Google Scholar 

  2. Eringen AC. Non-local continuum field theories. New York: Springer; 2002.

    Google Scholar 

  3. Fick A. Über diffusion. Ann Phys. 1855;94:59–86.

    Google Scholar 

  4. Darcy H. Les Fontaines Publiques de La Ville de Dijon. Paris: Victor Dalmont; 1856.

    Google Scholar 

  5. Rajagopal KK. On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math Model Meth Appl Sci. 2007;17(2):215–52.

    MATH  Google Scholar 

  6. Coleman B, Noll W. The thermomechanics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal. 1963;13:167–78.

    MATH  MathSciNet  Google Scholar 

  7. Müller I. On the entropy inequality. Arch Ration Mech Anal. 1967;26:118–41.

    MATH  Google Scholar 

  8. Müller I. On the frame dependence of stress and heat flux. Arch Ration Mech Anal. 1972;45:241–50.

    MATH  Google Scholar 

  9. Truesdell C. Correction of two errors in the kinetic theory of gases which have been used to cast unfounded doubt upon the principle of material frame-indifference. Meccanica. 1976;11(4):196–9.

    MATH  Google Scholar 

  10. Bressan A. On relativistic heat conduction in the stationary and non-stationary cases, the objectivity principle and piezoelasticity. Lett Nuovo Cimento. 1982;33(4):108–12.

    Google Scholar 

  11. Ruggeri T. Generators of hyperbolic heat equation in non-linear thermoelasticity. Rend Sem Mat Univ Padova. 1982;68:79–91.

    MATH  MathSciNet  Google Scholar 

  12. Eringen AC, Okada K. A lubrication theory for fluids with microstructure. Int J Eng Sci. 1995;33(15):2297–308.

    MATH  MathSciNet  Google Scholar 

  13. Israelashvili JN. Measurement of the viscosity of liquids in very thin films. J Colloid Interface Sci. 1986;110:263.

    Google Scholar 

  14. Israelashvili JN. Measurement of the viscosity of thin fluid films between two surfaces with and without adsorbed polymers. Colloid Polymer Sci. 1986;264:1060–5.

    Google Scholar 

  15. Eringen AC. On non-local fluid mechanics. Int J Eng Sci. 1972;10(6):561–75.

    MATH  Google Scholar 

  16. Eringen AC. On non-local micro-fluid mechanics. Int J Eng Sci. 1973;11(2):291–306.

    MATH  MathSciNet  Google Scholar 

  17. Speziale C, Eringen AC. Non-local fluid mechanics description of wall turbulence. Comput Math Appl. 1981;7:27–42.

    MATH  MathSciNet  Google Scholar 

  18. Demiray H, Eringen AC. On non-local diffusion of gases. Arch Mech. 1978;30:65–77.

    MATH  MathSciNet  Google Scholar 

  19. Eringen AC. Non-local inviscid magneto-hydrodynamics and dispersion of Alfven waves. Bull Tech Univ Istanbul. 1986;39:393–408.

    MATH  MathSciNet  Google Scholar 

  20. McCay BM, Narasimhan MNL. Theory of non-local electromagnetic fluids. Arch Mech. 1981;33(3):365–84.

    MATH  MathSciNet  Google Scholar 

  21. Narasimhan MNL, McCay BM. Dispersion of surface waves in non-local dielectric fluids. Arch Mech. 1981;33(3):385–400.

    MATH  MathSciNet  Google Scholar 

  22. Speziale CG. On turbulent secondary flows in pipes of non-circular cross-section. Int J Eng Sci. 1982;20(7):863–72.

    MATH  Google Scholar 

  23. Speziale CG. PhD Thesis, Princeton University; 1978.

    Google Scholar 

  24. Reddy JN. Non-local theories for bending, buckling and vibration of beams. Int J Eng Sci. 2007;45:288–307.

    MATH  Google Scholar 

  25. Thai H-T. A non-local beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci. 2012;52:56–64.

    MathSciNet  Google Scholar 

  26. Leonov AI. Constitutive equations for viscoelastic liquids: formulation, analysis and comparison with data. In: Siginer DA, De Kee D, Chhabra RP, editors. Advances in the flow and Rheology of non-Newtonian fluids, part a, Rheology series 8. New York: Elsevier; 1999. p. 577–91.

    Google Scholar 

  27. Oldroyd JG. On the formulation of rheological equations of state. Proc Roy Soc Lond A. 1950;200:523–91.

    MATH  MathSciNet  Google Scholar 

  28. Oldroyd JG. An approach to non-Newtonian fluid mechanics. J Non-Newton Fluid Mech. 1984;14:9–46.

    MATH  Google Scholar 

  29. Siginer DA. Dynamics of tube flow of viscoelastic fluids. New York: Springer; 2014.

    Google Scholar 

  30. Maxwell JC. On the dynamical theory of gases. Phil Trans Roy Soc Lond A. 1866;157:26–78.

    Google Scholar 

  31. Boltzmann L. Zür theorie der elästichen nachwirkung. Sitzgsberg Akad Wiss Wien. 1874;70:275–306.

    Google Scholar 

  32. Jeffreys H. The earth. Cambridge: Cambridge University Press; 1929.

    MATH  Google Scholar 

  33. Leonov AI. On a class of constitutive equations for viscoelastic liquids. J Non-Newton Fluid Mech. 1987;25(1):1–59.

    MATH  Google Scholar 

  34. Costa Mattos HS. A thermodynamically consistent constitutive theory for fluids. Int J Non Lin Mech. 1998;33(1):97–110.

    MATH  Google Scholar 

  35. Rajagopal KR, Srinivasa AR. A thermodynamic framework for rate-type fluid models. J Non-Newton Fluid Mech. 2000;88(3):207–27.

    MATH  Google Scholar 

  36. Fröhlich H, Sack R. Theory of the rheological properties of dispersions. Proc Roy Soc London A. 1946;185:415–30.

    Google Scholar 

  37. Oldroyd JG. The elastic and viscous properties of emulsions and suspensions. Proc Roy Soc London A. 1953;218:122–32.

    MATH  Google Scholar 

  38. Barnes HA, Hutton JF, Walters K. An introduction to Rheology. New York: Elsevier; 1989.

    MATH  Google Scholar 

  39. Burgers JM. Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity, first report on viscosity and plasticity, Nordermann publishing company, New York, 1935. 2nd edition prepared by the committee for the study of viscosity of the Academy of Sciences at Amsterdam. New York: Nordermann Publishing Company; 1939.

    Google Scholar 

  40. Burgers JM. Non-linear relations between viscous stresses and instantaneous rate of deformation as a consequence of slow relaxation. Proc Kon Ned Akad Wet. 1948;51:787–92.

    MATH  MathSciNet  Google Scholar 

  41. Murali Krishnan J, Rajagopal KR. Review of the uses and modeling of bitumen from ancient to modern times. Appl Mech Rev. 2003;56:149–214.

    Google Scholar 

  42. Murali Krishnan J, Rajagopal KR. On the mechanical behavior of asphalt. Mech Mater. 2005;37(11):1085–100.

    Google Scholar 

  43. Quintanilla R, Rajagopal KR. On Burgers fluids. Math Meth Appl Sci. 2006;29:2133–47.

    MATH  MathSciNet  Google Scholar 

  44. Quintanilla R, Rajagopal KR. Further mathematical results concerning Burgers fluids and their generalizations. Z Angew Math Phys. 2012;63:191–202.

    MATH  MathSciNet  Google Scholar 

  45. Green MS, Tobolsky AV. A new approach to the theory of relaxing polymeric media. J Chem Phys. 1946;14(2):80–92.

    Google Scholar 

  46. Lodge AS. A network theory of flow birefringence and stress in concentrated polymer solutions. Trans Faraday Soc. 1956;52:120–30.

    Google Scholar 

  47. Lodge AS. Elastic liquids. New York: Academic; 1964.

    Google Scholar 

  48. Yamamoto M. The viscoelastic properties of network structure I. General formalism. J Phys Soc Japan. 1956;11:413–21.

    MathSciNet  Google Scholar 

  49. Yamamoto M. The viscoelastic properties of network structure II. Structural viscosity. J Phys Soc Japan. 1957;12:1148–58.

    MathSciNet  Google Scholar 

  50. Yamamoto M. The viscoelastic properties of network structure III. Normal stress effect (Weissenberg effect). J Phys Soc Japan. 1958;13:1200–11.

    MathSciNet  Google Scholar 

  51. De Gennes PG. Scaling concepts in polymer physics. Ithaca, NY: Cornell University; 1979.

    Google Scholar 

  52. Doi M, Edwards SF. The theory of polymer dynamics. Oxford: Clarendon; 1986.

    Google Scholar 

  53. Kaye A. College of Aeronautics, Cranfield, Note No.134; 1962.

    Google Scholar 

  54. Bernstein B, Kearsley AE, Zapas L. A study of stress relaxation with finite strain. Trans Soc Rheol. 1963;7(1):391–410.

    MATH  Google Scholar 

  55. Marrucci G, Grizzuti N. The Doi-Edwards model in slow flows. Predictions on the Weissenberg effect. J Non-Newton Fluid Mech. 1986;21(3):319–28.

    MATH  Google Scholar 

  56. Marrucci G. The Doi-Edwards model without independent alignment. J Non-Newton Fluid Mech. 1986;21(3):329–36.

    MATH  Google Scholar 

  57. Wagner MH. A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech. 1978;4(1–2):39–55.

    Google Scholar 

  58. Wagner MH. Elongational behavior of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments. Rheol Acta. 1979;18(6):681–92.

    MATH  Google Scholar 

  59. Tanner RI. Engineering Rheology (revised edition). Oxford: Clarendon; 1988.

    Google Scholar 

  60. Schowalter WR. Mechanics of non-Newtonian fluids. London: Pergamon Press; 1978.

    Google Scholar 

  61. Larson RG. Constitutive equations for polymer melts and solutions. Boston: Butterworth; 1988.

    Google Scholar 

  62. Bird RB, Curtiss CF, Armstrong RC, Hassager O. Dynamics of polymeric liquids, vol. 1. 2nd ed. New York: Wiley; 1987.

    Google Scholar 

  63. Carreau PJ, De Kee DCR, Chhabra RP. Rheology of polymeric systems. Munich, Vienna, NY: Hanser Publishers; 1997.

    Google Scholar 

  64. Bird RB, Dotson PJ, Johnson NL. Polymer solution rheology based on a finitely extensible bead-spring chain model. J Non-Newton Fluid Mech. 1980;7:213–35.

    MATH  Google Scholar 

  65. Chilcott MD, Rallison JM. Creeping flow of dilute polymer solutions past cylinders and spheres. J Non-Newton Fluid Mech. 1988;29:381–432.

    MATH  Google Scholar 

  66. Ghosh I, McKinley GH, Brown RA, Armstrong RC. Deficiencies of FENE dumbbell models in describing the rapid stretching of dilute polymer solutions. J Rheol. 2001;45:721–58.

    Google Scholar 

  67. Chabbra RP, Uhlherr PHT, Boger DV. The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere. J Non-Newton Fluid Mech. 1980;6:187–99.

    Google Scholar 

  68. Sizaire R, Legat V. Finite element simulation of a filament stretching extensional rheometer. J Non-Newton Fluid Mech. 1997;71:89–107.

    Google Scholar 

  69. Bird RB, Wiest JM. Constitutive equations for polymeric liquids. Annu Rev Fluid Mech. 1995;27:169–93.

    MathSciNet  Google Scholar 

  70. Warner HR. Kinetic theory and rheology of dilute suspensions of finitely extensible dumbbells. Ind Eng Chem Fund. 1972;11:379–87.

    MathSciNet  Google Scholar 

  71. Peterlin A. Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J Polym Sci B. 1966;4:287–91.

    Google Scholar 

  72. Chandrasekhar S. Stochastic problems in physics and astronomy. Rev Mod Phys. 1943;15:1–89.

    MATH  MathSciNet  Google Scholar 

  73. Lielens G, Halin P, Jaumain I, Keunings R, Legat V. New closure approximations for the kinetic theory of finitely extensible dumbbells. J Non-Newton Fluid Mech. 1998;76:249–79.

    MATH  Google Scholar 

  74. Lielens I, Keunings R, Legat V. The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells. J Non-Newton Fluid Mech. 1999;87:179–96.

    MATH  Google Scholar 

  75. Verleye V, Dupret F. Prediction of fiber orientation in complex molded parts. In: Altan CAE, Siginer DA, Van Arsdale WE, Alexandrou AN, editors. Developments in non-Newtonian flows. New York: ASME; 1993. p. 139–63.

    Google Scholar 

  76. Phan-Thien N, Tanner RI. New constitutive equation derived from network theory. J Non-Newton Fluid Mech. 1977;2:353–65.

    Google Scholar 

  77. Phan-Thien N. Non-linear network viscoelastic model. J Rheol. 1978;22:259–83.

    MATH  Google Scholar 

  78. Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newton Fluid Mech. 1982;11:69–109.

    MATH  Google Scholar 

  79. Giesekus H. A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility. Rheol Acta. 1982;21(4–5):366–75.

    MATH  Google Scholar 

  80. Peters GWM, Schoonen JFM, Baaijens FPT, Meijer HEH. On the performance of enhanced constitutive models for polymer melts in a cross-slot flow. J Non-Newton Fluid Mech. 1999;82(2–3):387–427.

    MATH  Google Scholar 

  81. Owens RG, Phillips PN. Computational rheology. London: Imperial College Press; 2002.

    MATH  Google Scholar 

  82. Truesdell C, Noll W. The non-linear field theories of mechanics. 2nd ed. Berlin: Springer; 1992.

    MATH  Google Scholar 

  83. Reiner M. A mathematical theory of dilatancy. Am J Math. 1945;67:350–62.

    MATH  MathSciNet  Google Scholar 

  84. Reiner M. Elasticity beyond the elastic limit. Am J Math. 1948;70:433–46.

    MATH  MathSciNet  Google Scholar 

  85. Reiner M. Relations between stress and strain in complicated systems. Proc Int Con Rheol. 1949;1:1–21.

    Google Scholar 

  86. Rivlin RS. Large elastic deformations of isotropic materials, I. Fundamental concepts. Phil Trans Roy Soc Lond A. 1948;240:459–90.

    MATH  MathSciNet  Google Scholar 

  87. Rivlin RS. Large elastic deformations of isotropic materials, IV., further developments of the general theory. Phil Trans Roy Soc Lond A. 1948;241:379–97.

    MATH  MathSciNet  Google Scholar 

  88. Rivlin RS. Large elastic deformations of isotropic materials, V., the problem of flexure. Proc Roy Soc Lond A. 1949;195:463–73.

    MATH  MathSciNet  Google Scholar 

  89. Rivlin RS. Large elastic deformations of isotropic materials, VI., further results in the theory of torsion, shear and flexure. Phil Trans Roy Soc Lond A. 1949;242:173–95.

    MATH  MathSciNet  Google Scholar 

  90. Rivlin RS. The hydrodynamics of non-Newtonian fluids, I. Proc Roy Soc Lond A. 1948;193:260–81.

    MATH  MathSciNet  Google Scholar 

  91. Rivlin RS. The hydrodynamics of non-Newtonian fluids, II. Proc Camb Phil Soc. 1949;45:88–91.

    MATH  MathSciNet  Google Scholar 

  92. Rivlin RS. The normal stress coefficient in solutions of macro-molecules. Trans Faraday Soc. 1949;45:739–48.

    Google Scholar 

  93. Criminale Jr WO, Ericksen JL, Filbey GL. Steady shear flow of non-Newtonian fluids. Arch Ration Mech Anal. 1957;1(1):410–7.

    MathSciNet  Google Scholar 

  94. Wang CC. A representation theorem for the constitutive equation of a simple material in motions with constant stretch history. Arch Ration Mech Anal. 1965;20:329–40.

    MATH  Google Scholar 

  95. Larson RG. Flows of constant stretch history for polymeric materials with power-law distributions of relaxation times. Rheol Acta. 1985;24:443–9.

    MATH  Google Scholar 

  96. Tanner RI, Huilgol RR. On a classification scheme for flow fields. Rheol Acta. 1975;14:959–62.

    MATH  Google Scholar 

  97. Green AE, Rivlin RS. The mechanics of non-linear materials with memory, part 1. Arch Ration Mech Anal. 1957;1:1–21.

    MATH  MathSciNet  Google Scholar 

  98. Green AE, Rivlin RS, Spencer AJM. The mechanics of non-linear materials with memory, part 2. Arch Ration Mech Anal. 1959;3:82–90.

    MATH  MathSciNet  Google Scholar 

  99. Green AE, Rivlin RS. The mechanics of non-linear materials with memory, part 3. Arch Ration Mech Anal. 1960;4:387–404.

    MATH  MathSciNet  Google Scholar 

  100. Coleman BD, Noll W. An approximation theorem for functionals with applications in continuum mechanics. Arch Ration Mech Anal. 1960;6:355–70.

    MATH  MathSciNet  Google Scholar 

  101. Wang CC. The principle of fading memory. Arch Ration Mech Anal. 1965;18:343–66.

    MATH  Google Scholar 

  102. Coleman BD, Mizel V. On the general theory of fading memory. Arch Ration Mech Anal. 1968;29:18–31.

    MATH  MathSciNet  Google Scholar 

  103. Saut JC, Joseph DD. Fading memory. Arch Ration Mech Anal. 1982;81:53–95.

    MathSciNet  Google Scholar 

  104. Joseph DD. Stability of fluid motions II. New York: Springer; 1976.

    MATH  Google Scholar 

  105. Joseph DD. Rotating simple fluids. Arch Ration Mech Anal. 1977;66:311–44.

    MATH  Google Scholar 

  106. Joseph DD. The free surface on a simple fluid between cylinders undergoing torsional oscillations, part I, theory. Arch Ration Mech Anal. 1976;66(4):332–43.

    Google Scholar 

  107. Pipkin AC, Owen DR. Nearly viscometric flows. Phys Fluids. 1967;10:836–43.

    Google Scholar 

  108. Zahorski S. Flows with proportional stretch history. Arch Mech Stos. 1972;24:681.

    MATH  MathSciNet  Google Scholar 

  109. Zahorski S. Motions with superposed proportional stretch histories as applied to combined steady and oscillatory flows of simple fluids. Arch Mech Stos. 1973;25:575.

    MATH  Google Scholar 

  110. Siginer DA. On the effect of boundary vibration on Poiseuille flow of an elastico-viscous liquid. J Fluid Struct. 1992;6:719–48.

    Google Scholar 

  111. Siginer DA. On the pulsating pressure gradient driven flow of viscoelastic liquids. J Rheol. 1991;35(2):270–312.

    MathSciNet  Google Scholar 

  112. Beavers GS. The free surface on a simple fluid between cylinders undergoing torsional oscillations, part II: experiments. Arch Ration Mech Anal. 1976;62(4):323–52.

    MATH  MathSciNet  Google Scholar 

  113. Rivlin RS, Ericksen JL. Stress-deformation relations for isotropic materials. J Ration Mech Anal. 1955;4:323–425.

    MATH  MathSciNet  Google Scholar 

  114. Joseph DD. Instability of the rest state of fluids of arbitrary grade greater than one. Arch Ration Mech Anal. 1981;75(3):251–6.

    MATH  Google Scholar 

  115. Rivlin RS. Further remarks on the stress-deformation relations for isotropic materials. J Ration Mech Anal. 1955;4:681–702.

    MATH  MathSciNet  Google Scholar 

  116. Siginer DA. Memory integral constitutive equations in periodic flows and rheometry. Int J Polym Mater. 1993;21:45–56.

    Google Scholar 

  117. Siginer DA. Interface shapes in a torsionally oscillating layered medium of viscoelastic liquids. Acta Mech. 1987;66:233–49.

    MATH  Google Scholar 

  118. Siginer DA, Letelier M. Pulsating flow of viscoelastic fluids in tubes of arbitrary shape, part II: secondary flows. Int J Non Lin Mech. 2002;37(2):395–407.

    MATH  Google Scholar 

  119. Letelier M, Siginer DA, Caceres M. Pulsating flow of viscoelastic fluids in tubes of arbitrary shape, part I: longitudinal field. Int J Non Lin Mech. 2002;37(2):369–93.

    MATH  Google Scholar 

  120. Fosdick RL, Rajagopal KR. Thermodynamics and stability of fluids of third grade. Proc Roy Soc Lond A. 1980;369(1738):351–77.

    MATH  MathSciNet  Google Scholar 

  121. Müller I, Wilmanski K. Extended thermodynamics of a non-Newtonian fluid. Rheol Acta. 1986;25:335–49.

    MATH  Google Scholar 

  122. Dunn JR, Fosdick RL. Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade. Arch Ration Mech Anal. 1974;56(3):191–252.

    MATH  MathSciNet  Google Scholar 

  123. Fosdick RL, Rajagopal KR. Anomalous features in the model of “second order fluids”. Arch Ration Mech Anal. 1979;70(2):145–52.

    MATH  MathSciNet  Google Scholar 

  124. Müller I. Thermodynamics. London: Pitman; 1985.

    MATH  Google Scholar 

  125. Lebon G, Cloot A. An extended thermodynamic approach to non-Newtonian fluids and related results in Marangoni instability problem. J Non-Newton Fluid Mech. 1988;28(1):61–76.

    MATH  Google Scholar 

  126. Depireux N, Lebon G. An extended thermodynamics modeling of non-Fickian diffusion. J Non-Newton Fluid Mech. 2001;96(1–2):105–17.

    MATH  Google Scholar 

  127. Kluitenberg GA. On the thermodynamics of viscosity and plasticity. Physica. 1963;29(6):633–52.

    MATH  MathSciNet  Google Scholar 

  128. Kluitenberg GA. A unified thermodynamic theory for large deformations in elastic media and in Kelvin (Voight) media and for viscous fluid flow. Physica. 1964;30(10):1945–72.

    MATH  MathSciNet  Google Scholar 

  129. Kluitenberg GA. On heat dissipation due to irreversible mechanical phenomena in continuous media. Physica. 1967;35(2):177–92.

    MATH  Google Scholar 

  130. Ziegler H. Some extremum principles in irreversible thermodynamics. In: Sneddon IN, Hill R, editors. Progress in solid mechanics, vol. 4. New York: North Holland; 1963.

    Google Scholar 

  131. Rajagopal KR, Srinivasa AR. Inelastic behavior of materials, I. Theoretical underpinnings. Int J Plast. 1998;14:945–67.

    MATH  Google Scholar 

  132. Rajagopal KR, Srinivasa AR. On thermomechanical restrictions of continua. Proc Roy Soc Lond A. 2004;460:631–51.

    MATH  MathSciNet  Google Scholar 

  133. Onsager L. Reciprocal relations in irreversible thermodynamics, I. Phys Rev. 1931;37:405–26.

    Google Scholar 

  134. Prigogine I. Introduction to thermodynamics of irreversible processes. 3rd ed. New York: Interscience; 1967.

    Google Scholar 

  135. Karra S, Rajagopal KR. A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mech. 2009;205:105–19.

    MATH  Google Scholar 

  136. Karra S, Rajagopal KR. Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl Math. 2009;54:147–76.

    MATH  MathSciNet  Google Scholar 

  137. Breuer S, Onat ET. On the determination of free energy in linear viscoelastic solids. Z Angew Math Phys. 1964;15:184–91.

    MATH  MathSciNet  Google Scholar 

  138. Day WA. Reversibility, recoverable work and free energy in linear viscoelasticity. Q J Mech Appl Math. 1970;23:1–15.

    MATH  Google Scholar 

  139. Graffi D. Sull’espressione Analitica di Alcune Grandezze Termodinamiche nei Materiali con Memoria. Rend Semin Mat Univ Padova. 1982;68:17–29.

    MATH  MathSciNet  Google Scholar 

  140. Graffi D. Ancora Sull’espressione dell’energia Libera nei Materiali con Memoria. Atti Acc Scienze Torino. 1986;120:111–24.

    MathSciNet  Google Scholar 

  141. Morro A, Vianello M. Minimal and maximal free energy for materials with fading memory. Boll Un Mat Ital A. 1990;4:45–55.

    MATH  MathSciNet  Google Scholar 

  142. Graffi D, Fabrizio M. Non Unicita dell’energia Libera per Materiali Viscoelastici. Atti Accad Naz Lincei. 1990;83:209–14.

    MathSciNet  Google Scholar 

  143. Fabrizio M, Morro A. Mathematical problems in linear viscoelasticity. Philadelphia: SIAM; 1992.

    MATH  Google Scholar 

  144. Fabrizio M, Giorgi C, Morro A. Free energies and dissipation properties for systems with memory. Arch Ration Mech Anal. 1994;125:341–73.

    MATH  MathSciNet  Google Scholar 

  145. Fabrizio M, Giorgi C, Morro A. Internal dissipation, relaxation property and free energy in materials with fading memory. J Elasticity. 1995;40:107–22.

    MATH  MathSciNet  Google Scholar 

  146. Del Piero G, Deseri L. On the analytic expression of the free energy in linear viscoelasticity. J Elasticity. 1996;43:247–78.

    MATH  MathSciNet  Google Scholar 

  147. Deseri L, Gentili G, Golden JM. An explicit formula for the minimum free energy in linear viscoelasticity. J Elasticity. 1999;54:141–85.

    MATH  MathSciNet  Google Scholar 

  148. Fabrizio M, Golden JM. Maximum and minimum free energies for a linear viscoelastic material. Q Appl Math. 2002;60(2):341–81.

    MATH  MathSciNet  Google Scholar 

  149. Deseri L, Fabrizio M, Golden JM. The concept of a minimal state in viscoelasticity: new free energies and applications to PDEs. Arch Ration Mech Anal. 2006;181(1):43–96.

    MATH  MathSciNet  Google Scholar 

  150. Amendola G. The minimum free energy for incompressible viscoelastic fluids. Math Meth Appl Sci. 2006;29:2201–23.

    MATH  MathSciNet  Google Scholar 

  151. Amendola G. Free energies for incompressible viscoelastic fluids. Q Appl Math. 2010;68(2):349–74.

    MATH  MathSciNet  Google Scholar 

  152. Amendola G, Fabrizio M. Maximum recoverable work for incompressible viscoelastic fluids and application to a discrete spectrum model. Differ Integr Equat. 2007;20(4):445–66.

    MATH  MathSciNet  Google Scholar 

  153. Breuer S, Onat ET. On recoverable work in linear viscoelasticity. Z Angew Math Phys. 1964;15:13–21.

    Google Scholar 

  154. Golden JM. Free energy in the frequency domain: the scalar case. Q Appl Math. 2000;58(1):127–50.

    MATH  MathSciNet  Google Scholar 

  155. Gentili G. Maximum recoverable work, minimum free energy and state space in linear viscoelasticity. Q Appl Math. 2002;60(1):153–82.

    MATH  MathSciNet  Google Scholar 

  156. Coleman BD, Owen DR. A mathematical foundation of thermodynamics. Arch Ration Mech Anal. 1974;54:1–104.

    MATH  MathSciNet  Google Scholar 

  157. Fabrizio M, Lazzari B. On asymptotic stability for linear viscoelastic fluids. Differ Integr Equat. 1993;6(3):491–505.

    MATH  MathSciNet  Google Scholar 

  158. Noll W. A new mathematical theory of simple materials. Arch Ration Mech Anal. 1972;48:1–50.

    MATH  MathSciNet  Google Scholar 

  159. Fabrizio M, Morro A. Reversible processes in thermodynamics of continuous media. J Non-Equil Thermody. 1991;16:1–12.

    MATH  Google Scholar 

  160. Volterra V. Theory of functional and of integral and integro-differential equations. London: Blackie & Son Limited; 1930.

    Google Scholar 

  161. Stokes GG. On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans Camb Phil Soc. 1845;8:287–305.

    Google Scholar 

  162. Du Buat M. Principes d’Hydraulique et de Pyrodynamique. Paris: Didot; 1786.

    Google Scholar 

  163. Barus C. Isotherms, isopiestics and isometrics relative to viscosity. Am J Sci. 1893;45:87–96.

    Google Scholar 

  164. Höglund E. Influence of lubricant properties on elastohydrodynamic lubrication. Wear. 1999;232:176–84.

    Google Scholar 

  165. Roelands CJA. Correlation aspects of the viscosity-temperature-pressure relationship of lubricating oils. PhD dissertation, Technische Hogeschool Delft, The Netherlands; 1966.

    Google Scholar 

  166. Irving JB, Barlow AJ. An automatic high pressure viscometer. J Phys. 1971;E4:232–6.

    Google Scholar 

  167. Paluch M, Dendzik Z, Rzoska SJ. Scaling of high-pressure viscosity data in low molecular-weight glass-forming liquids. Phys Rev B. 1999;60:2979–82.

    Google Scholar 

  168. Bridgman PW. The physics of high pressure. New York: Macmillan; 1931.

    Google Scholar 

  169. Bridgman PW. The effect of pressure on the viscosity of forty three pure fluids. Proc Am Acad Arts Sci. 1926;61:57–99.

    Google Scholar 

  170. Andrade EC. Viscosity of liquids. Nature. 1930;125:309–10.

    MATH  Google Scholar 

  171. Griest EM, Webb W, Schiessler RW. Effect of pressure on viscosity of higher hydrocarbons and their mixtures. J Chem Phys. 1958;29:711–20.

    Google Scholar 

  172. Johnson KL, Cameron R. Shear behaviour of elastohydrodynamic oil films at high rolling contact pressures. Proc Inst Mech Eng. 1967;182:307–19.

    Google Scholar 

  173. Johnson KL, Tevaarwerk JL. Shear behaviour of elastohydrodynamic oil films. Proc Roy Soc Lond A. 1977;356:215–36.

    MATH  Google Scholar 

  174. Bair S, Winer WO. The high pressure high shear stress rheology of liquid lubricants. J Tribol. 1992;114:1–13.

    Google Scholar 

  175. Bair S, Kottke P. Pressure-viscosity relationships for elastohydrodynamics. Tribol Trans. 2003;46:289–95.

    Google Scholar 

  176. Szeri AZ. Fluid film lubrication: theory and design. Cambridge: Cambridge University Press; 1998.

    MATH  Google Scholar 

  177. Dowson D, Higginson GR. Elastohydrodynamic lubrication, the fundamentals of roller and gear lubrication. Oxford: Pergamon; 1966.

    Google Scholar 

  178. Rajagopal KR. On implicit constitutive theories for fluids. J Fluid Mech. 2006;550:243–9.

    MATH  MathSciNet  Google Scholar 

  179. Spencer AJM. Theory of invariants. In: Eringen AC, editor. Continuum physics, vol. 3. New York: Academic; 1975.

    Google Scholar 

  180. Málek J, Necas J, Rajagopal KR. Global analysis of the flows of fluids with pressure dependent viscosities. Arch Ration Mech Anal. 2002;165:243–69.

    MATH  MathSciNet  Google Scholar 

  181. Franta M, Málek J, Rajagopal KR. On steady flows of fluids with pressure and shear dependent viscosities. Proc Roy Soc Lond A. 2005;461(2055):651–70.

    MATH  Google Scholar 

  182. Gauss CF. Über ein neues allgemeines Grundegesetz der Mechanik. J Reine Angew Math. 1829;4:232–5.

    MATH  Google Scholar 

  183. Rajagopal KR. On implicit constitutive theories. Appl Math. 2003;48(4):279–319.

    MATH  MathSciNet  Google Scholar 

  184. Rajagopal KR, Srinivasa AR. On the nature of constraints for continua undergoing dissipative processes. Proc Roy Soc Lond A. 2005;461:2785–95.

    MATH  MathSciNet  Google Scholar 

  185. Hron J, Málek J, Rajagopal KR. Simple flows of fluids with pressure dependent viscosities. Proc Roy Soc Lond A. 2001;457:1603–22.

    MATH  Google Scholar 

  186. Bair S, Khonsari M, Winer WO. High pressure rheology of lubricants and limitations of the Reynolds equation. Tribol Int. 1998;31:573–86.

    Google Scholar 

  187. Reynolds O. On the theory of lubrication and its application to Mr Tower’s experiments. Phil Trans Roy Soc Lond. 1886;177:159–209.

    Google Scholar 

  188. Rajagopal KR, Szeri AZ. On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proc Roy Soc Lond A. 2003;459:2771–86.

    MATH  MathSciNet  Google Scholar 

  189. Johnson Jr MW, Segalman D. Model for viscoelastic fluid behavior which allows non-affine deformation. J Non-Newton Fluid Mech. 1977;2:255–70.

    MATH  Google Scholar 

  190. Gordon RJ, Schowalter WR. Anisotropic fluids theory: a different approach to the dumbbell theory of dilute polymer solutions. Trans Soc Rheol. 1972;16:79–97.

    MATH  Google Scholar 

  191. White JL, Metzner AB. Development of constitutive equation for polymer melts and solutions. J Appl Polymer Sci. 1963;7:1867–89.

    Google Scholar 

  192. Leonov AI. Non-equilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol Acta. 1976;15:85–98.

    MATH  Google Scholar 

  193. Larson RG. Constitutive equation for polymer melts based on partially extending strand convention. J Rheol. 1984;28:545–71.

    MATH  Google Scholar 

  194. Bird RB, Armstrong RC, Hassager O, Curtiss CF. Dynamics of polymeric liquids. Volume 2: kinetic theory. 2nd ed. New York: Wiley; 1987.

    Google Scholar 

  195. Rivlin RS, Sawyers KN. Non-linear continuum mechanics of viscoelastic fluids. Annu Rev Fluid Mech. 1971;3:117–46.

    Google Scholar 

  196. Larson RG, Monroe K. The BKZ as an alternative to the Wagner model for fitting shear and elongational flow data of an LPDE melt. Rheol Acta. 1984;23(1):10–3.

    Google Scholar 

  197. Wagner MH, Raible T, Meissner J. Tensile stress overshoot in uniaxial extension of a LDPE melt. Rheol Acta. 1979;18(3):427–8.

    Google Scholar 

  198. Wagner MH, Demarmels A. A constitutive analysis of extensional flows of polyisobutylene. J Rheol. 1990;34(6):943–58.

    Google Scholar 

  199. Papanastasiou AC, Scriven LE, Macosko CW. Integral constitutive equation for mixed flows: viscoelastic characterization. J Rheol. 1983;27(4):387–410.

    Google Scholar 

  200. Luo XL, Tanner RI. Finite element simulation of long and short circular die extrusion experiments using integral models. Int J Numer Meth Eng. 1988;25:9–22.

    MATH  Google Scholar 

  201. Truesdell C, Noll W. The non-linear field theories of mechanics. In: Flugge S, editor. Handbuch der Physik. Berlin: Springer; 1965.

    Google Scholar 

  202. Rutkevich IM. Steady flow of a viscoelastic fluid in a channel with permeable walls. J Appl Math Mech. 1969;33:573–80.

    MathSciNet  Google Scholar 

  203. Rutkevich IM. Propagation of small perturbations in a viscoelastic fluid. J Appl Math Mech. 1970;34:35–50.

    MATH  MathSciNet  Google Scholar 

  204. Leonov AI. Analysis of simple constitutive equations of viscoelastic liquids. J Non-Newton Fluid Mech. 1992;42(3):323–50.

    MATH  Google Scholar 

  205. Kwon Y, Leonov AI. On Hadamard-type stability of single integral constitutive equations of viscoelastic liquids. J Non-Newton Fluid Mech. 1993;47:77–91.

    MATH  Google Scholar 

  206. Kwon Y, Leonov AI. Stability constraints in the formulation of viscoelastic constitutive equations. J Non-Newton Fluid Mech. 1995;58(1):25–46.

    Google Scholar 

  207. Dupret F, Marchal JM. Loss of evolution in the flow of viscoelastic fluids. J Non-Newton Fluid Mech. 1986;20:143–71.

    MATH  Google Scholar 

  208. Verdier C, Joseph DD. Change of type and loss of evolution of White-Metzner model. J Non-Newton Fluid Mech. 1989;31(3):325–43.

    MATH  Google Scholar 

  209. Kwon Y, Leonov AI. On instability of single-integral constitutive equations for viscoelastic liquids. Rheol Acta. 1994;33(5):398–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Siginer, D.A. (2014). Constitutive Formulations. In: Stability of Non-Linear Constitutive Formulations for Viscoelastic Fluids. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-02417-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02417-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02416-5

  • Online ISBN: 978-3-319-02417-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics